Vol 7, No 3 (2015)
- Year: 2015
- Published: 15.09.2015
- Articles: 16
- URL: https://actanaturae.ru/2075-8251/issue/view/836
Reviews
Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins
Abstract
To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements.
PARP1 Inhibitors: Antitumor Drug Design
Abstract
The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a “sensor” for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed.
Injured Nerve Regeneration using Cell-Based Therapies: Current Challenges
Abstract
This paper reviews the recent research progress in the past several years on promoting peripheral nerve recovery using stem and progenitory cells. The emphasis is placed on studies aimed at assessing various stem cells capable of expressing neurotrophic and growth factors and surviving after implantation in the nerve or a conduit. Approaches to improving nerve conduit design are summarized. The contribution of stem cells to axonal regeneration and neural repair is discussed. The side effects associated with cell-based treatment are highlighted. From the studies reviewed, it is concluded that the fate of transplanted stem cells needs further elucidation in a microenvironment-dependent manner.
Extracellular Nucleic Acids in Urine: Sources, Structure, Diagnostic Potential
Abstract
Cell-free nucleic acids (cfNA) may reach the urine through cell necrosis or apoptosis, active secretion of nucleic acids by healthy and tumor cells of the urinary tract, and transport of circulating nucleic acids (cir-NA) from the blood into primary urine. Even though urinary DNA and RNA are fragmented, they can be used to detect marker sequences. MicroRNAs are also of interest as diagnostic probes. The stability of cfNA in the urine is determined by their structure and packaging into supramolecular complexes and by nuclease activity in the urine. This review summarizes current data on the sources of urinary cfNA, their structural features, diagnostic potential and factors affecting their stability.
Research Articles
Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max
Abstract
Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.
Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein
Abstract
The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major peach allergen Pru p 3. Both isoforms were shown to have immunological properties similar to those of other plant allergenic LTPs, but Lc-LTP3 displayed a less pronounced immunoreactivity.
The Use of Transcription Terminators to Generate Transgenic Lines of Chinese Hamster Ovary Cells (CHO) with Stable and High Level of Reporter Gene Expression
Abstract
Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.
The Same Synaptic Vesicles Originate Synchronous and Asynchronous Transmitter Release
Abstract
Transmitter release and synaptic vesicle exo- and endocytosis during high-frequency stimulation (20 pulses/s) in the extracellular presence of different bivalent cations (Ca2+, Sr2+ or Ba2+) were studied in frog cutaneous pectoris nerve-muscle preparations. It was shown in electrophysiological experiments that almost only synchronous transmitter release was registered in a Ca2+-containing solution; a high intensity of both synchronous and asynchronous transmitter release was registered in a Sr2+-containing solution, and asynchronous transmitter release almost only was observed in a Ba2+-containing solution. It was shown in experiments with a FM 1-43 fluorescent dye that the synaptic vesicles that undergo exocytosis-endocytosis during synchronous transmitter release (Ca-solutions) are able to participate in asynchronous exocytosis in Ba-solutions. The vesicles that had participated in the asynchronous transmitter release (Ba-solutions) could subsequently participate in a synchronous release (Ca-solutions). It was shown in experiments with isolated staining of recycling and reserve synaptic vesicle pools that both types of evoked transmitter release originate from the same synaptic vesicle pool.
Genomic Study of Cardiovascular Continuum Comorbidity
Abstract
Comorbidity or a combination of several diseases in the same individual is a common and widely investigated phenomenon. However, the genetic background for non-random disease combinations is not fully understood. Modern technologies and approaches to genomic data analysis enable the investigation of the genetic profile of patients burdened with several diseases (polypathia, disease conglomerates) and its comparison with the profiles of patients with single diseases. An association study featuring three groups of patients with various combinations of cardiovascular disorders and a control group of relatively healthy individuals was conducted. Patients were selected as follows: presence of only one disease, ischemic heart disease (IHD); a combination of two diseases, IHD and arterial hypertension (AH); and a combination of several diseases, including IHD, AH, type 2 diabetes mellitus (T2DM), and hypercholesterolemia (HC). Genotyping was performed using the “My Gene” genomic service (www.i-gene.ru). An analysis of 1,400 polymorphic genetic variants and their associations with the studied phenotypes are presented. A total of 14 polymorphic variants were associated with the phenotype “IHD only,” including those in the APOB, CD226, NKX2-5, TLR2, DPP6, KLRB1, VDR, SCARB1, NEDD4L, and SREBF2 genes, and intragenic variants rs12487066, rs7807268, rs10896449, and rs944289. A total of 13 genetic markers were associated with the “IHD and AH” phenotype, including variants in the BTNL2, EGFR, CNTNAP2, SCARB1, and HNF1A genes, and intragenic polymorphisms rs801114, rs10499194, rs13207033, rs2398162, rs6501455, and rs1160312. A total of 14 genetic variants were associated with a combination of several diseases of cardiovascular continuum (CVC), including those in the TAS2R38, SEZ6L, APOA2, KLF7, CETP, ITGA4, RAD54B, LDLR, and MTAP genes, along with intragenic variants rs1333048, rs1333049, and rs6501455. One common genetic marker was identified for the “IHD only” and “IHD and AH” phenotypes: rs4765623 in the SCARB1 gene; two common genetic markers, rs663048 in SEZ6L and intragenic rs6501455, were identified for the “IHD and AH” phenotype and a combination of several diseases (syntropy); there were no common genetic markers for the “syntropy” and “IHD only” phenotypes. Classificatory analysis of the relationships between the associated genes and metabolic pathways revealed that lipid-metabolizing genes are involved in the development of all three CVC variants, whereas immunity-response genes are specific to the “IHD only” phenotype. The study demonstrated that comorbidity presents additional challenges in association studies of disease predisposition, since the genetic profile of combined forms of pathology can be markedly different from those for isolated “single” forms of a disease.
Regulation of Human Adenovirus Replication by RNA Interference
Abstract
Adenoviruses cause a wide variety of human infectious diseases. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are commonly associated with human species D adenoviruses. Currently, there is no sufficient or appropriate treatment to counteract these adenovirus infections. Thus, there is an urgent need for new etiology-directed therapies with selective activity against human adenoviruses. To address this problem, the adenoviral early genes E1A and E2B (viral DNA polymerase) seem to be promising targets. Here, we propose an effective approach to downregulate the replication of human species D adenoviruses by means of RNA interference. We generated E1A expressing model cell lines enabling fast evaluation of the RNA interference potential. Small interfering RNAs complementary to the E1A mRNA sequences of human species D adenoviruses mediate significant suppression of the E1A expression in model cells. Furthermore, we observed a strong downregulation of replication of human adenoviruses type D8 and D37 by small hairpin RNAs complementary to the E1A or E2B mRNA sequences in primary human limbal cells. We believe that our results will contribute to the development of efficient anti-adenoviral therapy.
The Novel Dipeptide Translocator Protein Ligand, Referred to As GD-23, Exerts Anxiolytic and Nootropic Activities
Abstract
The translocator protein (TSPO) promotes the translocation of cholesterol to the inner mitochondrial membrane and mediates steroid formation. In this study, we first report on a biological evaluation of the dipeptide GD-23 (N-carbobenzoxy-L tryptophanyl-L isoleucine amide), a structural analogue of Alpidem, the principal TSPO ligand. We show that GD-23 in a dose range of 0.05 to 0.5 mg/kg (i.p.) exhibits anxiolytic activity in the elevated plus maze test and nootropic activity in the object recognition test in scopolamine-induced amnesia in rodents. It was shown that GD-23 did not affect spontaneous locomotor activity, holding promise as a nonsedative anxiolytic agent. The anxiolytic and nootropic activities of GD-23 were abrogated by the TSPO specific ligand PK11195, which thus suggests a role for TSPO in mediating the pharmacological activity of GD-23.
5-Arylaminouracil Derivatives as Potential Dual-Action Agents
Abstract
Several 5-aminouracil derivatives that have previously been shown to inhibit Mycobacterium tuberculosis growth at concentrations of 5-40 μg/mL are demonstrated to act also as noncompetitive non-nucleoside inhibitors of HIV-1 reverse transcriptase without causing toxicity in vitro (МT-4 cells) and ex vivo (human tonsillar tissue).
Clonal Rearrangements and Malignant Clones in Peripheral T-cell Lymphoma
Abstract
Aim: To assess the feasibility and informative value of T-cell clonality testing in peripheral T-cell lymphoma (PTCL). Patients and methods: Biopsies of involved sites, blood, and bone marrow samples from 30 PTCL patients are included in the study. Rearranged TCRG and TCRB gene fragments were PCR-amplified according to the BIOMED-2 protocol and analyzed by capillary electrophoresis on ABI PRISM 3130 (Applied Biosystems). Results: TCRG and TCRB gene clonality assay was valuable in confirming diagnosis in 97% of PTCL patients. T-cell clonality assay performed on blood or bone marrow samples reaffirmed lymphoma in 93% of cases, whereas morphological methods were informative in 73% of cases only. We observed multiple TCRG and TCRB gene rearrangements, loss of certain clones in the course of the disease, as well as acquisition of new clones in 63% of PTCL cases, which can be attributed to the genetic instability of the tumor. Conclusion: TCRG and TCRB gene clonality assay is beneficial for the diagnosis of PTCL. However, the presence of multiple clonal rearrangements should be considered. Clonal evolution in PTCL, particularly acquisition of new clones, should not be treated as a second tumor. Multiple TCRG and TCRB gene rearrangements may interfere with minimal residual disease monitoring in PTCL.
Internalization and Recycling of the HER2 Receptor on Human Breast Adenocarcinoma Cells Treated with Targeted Phototoxic Protein DARPinminiSOG
Abstract
Design and evaluation of new high-affinity protein compounds that can selectively and efficiently destroy human cancer cells are a priority research area in biomedicine. In this study we report on the ability of the recombinant phototoxic protein DARPin-miniSOG to interact with breast adenacarcinoma human cells overexpressing the extracellular domain of human epidermal growth factor receptor 2 (HER2). It was found that the targeted phototoxin DARPin-miniSOG specifically binds to the HER2 with following internalization and slow recycling back to the cell membrane. An insight into the role of DARPin-miniSOG in HER2 internalization could contribute to the treatment of HER2-positive cancer using this phototoxic protein.
Apigenin Inhibits Growth of Breast Cancer Cells: The Role of ERα and HER2/neu
Abstract
Phytoestrogens are a group of plant-derived compounds with an estrogen-like activity. In mammalians, phytoestrogens bind to the estrogen receptor (ER) and participate in the regulation of cell growth and gene transcription. There are several reports of the cytotoxic effects of phytoestrogens in different cancer cell lines. The aim of this study was to measure the phytoestrogen activity against breast cancer cells with different levels of ER expression and to elucidate the molecular pathways regulated by the leader compound. Methods used in the study include immunoblotting, transfection with a luciferase reporter vector, and a MTT test. We demonstrated the absence of a significant difference between ER+ and ER- breast cancer cell lines in their response to cytotoxic stimuli: treatment with high doses of phytoestrogens (apigenin, genistein, quercetin, naringenin) had the same efficiency in ER-positive and ER-negative cells. Incubation of breast cancer cells with apigenin revealed the highest cytotoxicity of this compound; on the contrary, naringenin treatment resulted in a low cytotoxic activity. It was shown that high doses of apigenin (50 μМ) do not display estrogen-like activity and can suppress ER activation by 17β-estradiol. Cultivation of HER2-positive breast cancer SKBR3 cells in the presence of apigenin resulted in a decrease in HER2/neu expression, accompanied by cleavage of an apoptosis substrate PARP. Therefore, the cytotoxic effects of phytoestrogens are not associated with the steroid receptors of breast cancer cells. Apigenin was found to be the most effective phytoestrogen that strongly inhibits the growth of breast cancer cells, including HER2-positive ones.
Forum
Life Sciences in Russia: Priorities in 2014-2020
Abstract
Life sciences are a priority in scientific development in Russia. The scientific interests of Russian research teams working in this area cover a range from the design of devices to sophisticated molecular biological experiments. The concept of implementation of the Life Sciences was developed based on proposals for research topics and projects submitted to the Ministry of Education and Science of the Russian Federation in 2013-2014. The concept defines four major directions of developments: (1) personal genomics and post-genomic technologies; (2) integrating devices and materials with the body; (3) memory and brain plasticity; and (4) bioactive substances.