Vol 6, No 1 (2014)

Forum

Microbiota, Intestinal Immunity, and Mouse Bustle

Kruglov A.A., Nedospasov S.A.

Abstract

The composition of the intestinal microbiota is regulated by the immune system. This paper discusses the role of cytokines and innate immunity lymphoid cells in the intestinal immune regulation by means of IgA.

Acta Naturae. 2014;6(1):6-8
pages 6-8 views

Reviews

Williams Syndrome As a Model for Elucidation of the Pathway Genes - the Brain - Cognitive Functions: Genetics and Epigenetics

Nikitina Е.А., Medvedeva A.V., Zakharov G.А., Savvateeva-Popova Е.V.

Abstract

Genomic diseases or syndromes with multiple manifestations arise spontaneously and unpredictably as a result of contiguous deletions and duplications generated by unequal recombination in chromosomal regions with a specific architecture. The Williams syndrome is believed to be one of the most attractive models for linking genes, the brain, behavior and cognitive functions. It is a neurogenetic disorder resulting from a 1.5 Mb deletion at 7q11.23 which covers more than 20 genes; the hemizigosity of these genes leads to multiple manifestations, with the behavioral ones comprising three distinct domains: 1) visuo-spatial orientation; 2) verbal and linguistic defect; and 3) hypersocialisation. The shortest observed deletion leads to hemizigosity in only two genes: eln and limk1. Therefore, the first gene is supposed to be responsible for cardiovascular pathology; and the second one, for cognitive pathology. Since cognitive pathology diminishes with a patient’s age, the original idea of the crucial role of genes straightforwardly determining the brain’s morphology and behavior was substituted by ideas of the brain’s plasticity and the necessity of finding epigenetic factors that affect brain development and the functions manifested as behavioral changes. Recently, non-coding microRNAs (miRs) began to be considered as the main players in these epigenetic events. This review tackles the following problems: is it possible to develop relatively simple model systems to analyze the contribution of both a single gene and the consequences of its epigenetic regulation in the formation of the Williams syndrome’s cognitive phenotype? Is it possible to use Drosophila as a simple model system?

Acta Naturae. 2014;6(1):9-22
pages 9-22 views

Molecular Mechanism of Global Genome Nucleotide Excision Repair

Petruseva I.O., Evdokimov A.N., Lavrik O.I.

Abstract

Nucleotide excision repair (NER) is a multistep process that recognizes and eliminates a wide spectrum of damage causing significant distortions in the DNA structure, such as UV-induced damage and bulky chemical adducts. The consequences of defective NER are apparent in the clinical symptoms of individuals affected by three disorders associated with reduced NER capacities: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). These disorders have in common increased sensitivity to UV irradiation, greatly elevated cancer incidence (XP), and multi-system immunological and neurological disorders. The eucaryotic NER system eliminates DNA damage by the excision of 24-32 nt single-strand oligonucleotides from a damaged strand, followed by restoration of an intact double helix by DNA repair synthesis and DNA ligation. About 30 core polypeptides are involved in the entire repair process. NER consists of two pathways distinct in initial damage sensor proteins: transcription-coupled repair (TC-NER) and global genome repair (GG-NER). The article reviews current knowledge on the molecular mechanisms underlying damage recognition and its elimination from mammalian DNA.

Acta Naturae. 2014;6(1):23-34
pages 23-34 views

“Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O.

Abstract

While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed.

Acta Naturae. 2014;6(1):35-44
pages 35-44 views

Research Articles

Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells

Muchkaeva I.A., Dashinimaev E.B., Artyuhov A.S., Myagkova E.P., Vorotelyak E.A., Yegorov Y.Y., Vishnyakova K.S., Kravchenko J.E., Chumakov S.P., Terskikh V.V., Vasiliev A.V.

Abstract

Dermal papilla (DP) cells are unique regional stem cells of the skin that induce formation of a hair follicle and its regeneration cycle. DP are multipotent stem cells; therefore we supposed that the efficiency of DPC reprogramming could exceed that of dermal fibroblasts reprogramming. We generated induced pluripotent stem cells from human DP cells using lentiviral transfection with Oct4, Sox2, Klf4, and c-Myc, and cultivation of cells both in a medium supplemented with valproic acid and at a physiological level of oxygen (5%). The efficiency of DP cells reprogramming was ~0.03%, while the efficiency of dermal fibroblast reprogramming under the same conditions was ~0.01%. Therefore, we demonstrated the suitability of DP cells as an alternative source of iPS cells.

Acta Naturae. 2014;6(1):45-53
pages 45-53 views

Patient-Specific Induced Pluripotent Stem Cells for SOD1-Associated Amyotrophic Lateral Sclerosis Pathogenesis Studies

Chestkov I.V., Vasilieva E.A., Illarioshkin S.N., Lagarkova M.A., Kiselev S.L.

Abstract

The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells, called induced pluripotent stem cells (iPSCs), can be an unlimited source of specialized cell types for the body. Thus, autologous somatic cell replacement therapy becomes possible, as well as the generation of in vitro cell models for studying the mechanisms of disease pathogenesis and drug discovery. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder that leads to a loss of upper and lower motor neurons. About 10% of cases are genetically inherited, and the most common familial form of ALS is associated with mutations in the SOD1 gene. We used the reprogramming technology to generate induced pluripotent stem cells with patients with familial ALS. Patient-specific iPS cells were obtained by both integration and transgene-free delivery methods of reprogramming transcription factors. These iPS cells have the properties of pluripotent cells and are capable of direct differentiation into motor neurons.

Acta Naturae. 2014;6(1):54-60
pages 54-60 views

Fusion to the Lysosome Targeting Signal of the Invariant Chain Alters the Processing and Enhances the Immunogenicity of HIV-1 Reverse Transcriptase

Starodubova E.S., Isaguliants М.G., Kuzmenko Y.V., Latanova A.A., Krotova О.А., Karpov V.L.

Abstract

Intracellular processing of the antigen encoded by a DNA vaccine is one of the key steps in generating an immune response. Immunization with DNA constructs targeted to the endosomal-lysosomal compartments and to the MHC class II pathway can elicit a strong immune response. Herein, the weakly immunogenic reverse transcriptase of HIV-1 was fused to the minimal lysosomal targeting motif of the human MHC class II invariant chain. The motif fused to the N-terminus shifted the enzyme intracellular localization and accelerated its degradation. Degradation of the chimeric protein occurred predominantly in the lysosomal compartment. BALB/c mice immunized with the plasmid encoding the chimeric protein demonstrated an enhanced immune response, in the form of an increased antigen-specific production of Th1 cytokines, INF-γ and IL-2, by mouse splenocytes. Moreover, the majority of the splenocytes secreted both cytokines; i.e., were polyfunctional. These findings suggest that retargeting of the antigen to the lysosomes enhances the immune response to DNA vaccine candidates with low intrinsic immunogenicity.

Acta Naturae. 2014;6(1):61-68
pages 61-68 views

The Role of Dihydroorotate Dehydrogenase in Apoptosis Induction in Response to Inhibition of the Mitochondrial Respiratory Chain Complex III

Khutornenko A.A., Dalina A.A., Chernyak B.V., Chumakov P.M., Evstafieva A.G.

Abstract

A mechanism for the induction of programmed cell death (apoptosis) upon dysfunction of the mitochondrial respiratory chain has been studied. Previously, we had found that inhibition of mitochondrial cytochrome bc1, a component of the electron transport chain complex III, leads to activation of tumor suppressor p53, followed by apoptosis induction. The mitochondrial respiratory chain is coupled to the de novo pyrimidine biosynthesis pathway via the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH). The p53 activation induced in response to the inhibition of the electron transport chain complex III has been shown to be triggered by the impairment of the de novo pyrimidine biosynthesis due to the suppression of DHODH. However, it remained unclear whether the suppression of the DHODH function is the main cause of the observed apoptotic cell death. Here, we show that apoptosis in human colon carcinoma cells induced by the mitochondrial respiratory chain complex III inhibition can be prevented by supplementation with uridine or orotate (products of the reaction catalyzed by DHODH) rather than with dihydroorotate (a DHODH substrate). We conclude that apoptosis is induced in response to the impairment of the de novo pyrimidine biosynthesis caused by the inhibition of DHODH. The conclusion is supported by the experiment showing that downregulation of DHODH by RNA interference leads to accumulation of the p53 tumor suppressor and to apoptotic cell death.

Acta Naturae. 2014;6(1):69-75
pages 69-75 views

Protective Immune Response against Bacillus anthracis Induced by Intranasal Introduction of a Recombinant Adenovirus Expressing the Protective Antigen Fused to the Fc-fragment of IgG2a

Shcherbinin D.N., Esmagambetov I.B., Noskov A.N., Selyaninov Y.O., Tutykhina I.L., Shmarov M.M., Logunov D.Y., Naroditskiy B.S., Gintsburg A.L.

Abstract

Anthrax is a particularly dangerous infectious disease that affects humans and livestock. It is characterized by intoxication, serosanguineous skin lesions, development of lymph nodes and internal organs, and may manifest itsself in either a cutaneous or septic form. The pathogenic agent is Bacillus anthracis, a grampositive, endospore-forming, rod-shaped aerobic bacterium. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. In this study, we designed three recombinant human adenovirus serotype-5-based vectors containing various modifications of the fourth domain of the B. anthracis protective antigen (PA). Three PA modifications were constructed: a secretable form (Ad-sPA), a non-secretable form (Ad-cPA), and a form with the protective antigen fused to the Fc fragment of immunoglobulin G2a (Ad-PA-Fc). All these forms exhibited protective properties against Bacillus anthracis. The highest level of protection was induced by the Ad-PA-Fc recombinant adenovirus. Our findings indicate that the introduction of the Fc antibody fragment into the protective antigen significantly improves the protective properties of the Ad-PA-Fc adenovirus against B. anthracis.

Acta Naturae. 2014;6(1):76-84
pages 76-84 views

Development of Immunoassays Using Interferometric Real-Time Registration of Their Kinetics

Orlov A.V., Burenin A.G., Shipunova V.O., Lizunova A.A., Gorshkov B.G., Nikitin P.I.

Abstract

A method for effective development of solid-phase immunoassays on a glass surface and for optimization of related protocols by highly sensitive quantitative monitoring of each assay step has been proposed and experimentally implemented. The method is based on the spectral correlation interferometry (SCI) that allows real-time measuring of the thickness of a biomolecular layer bound to the recognition molecular receptors on the sensor chip surface. The method is realized with compact 3-channel SCI-biosensors that employ as the sensor chips standard cover glass slips without deposition of any additional films. Different schemes for antibody immobilization on a glass surface have been experimentally compared and optimized toward a higher sorption capacity of the sensor chips. Comparative characterization of the kinetics of each immunoassay stage has been implemented with the optimized protocols: i) covalent immobilization of antibody on an epoxylated surface and ii) biotinylated antibody sorption on a biotinylated surface via a high-affinity biotin-streptavidin bond. We have shown that magnetic nanoparticles employed as labels with model detection of cardiac troponin I further amplify the SCI signal, resulting in 100-fold improvement of the detection limit. The developed protocols can also be used with the alternative immunoassay platforms, including the label methods based on registration of only the final assay result, which is the quantity of bound labels.

Acta Naturae. 2014;6(1):85-95
pages 85-95 views

Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing

Moisenovich M.M., Arkhipova A.Y., Orlova A.A., Drutskaya M.S., Volkova S.V., Zacharov S.E., Agapov I.I., Kirpichnikov M.P.

Abstract

Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems.

Acta Naturae. 2014;6(1):96-101
pages 96-101 views

Short communications

Impact of Surface Modification with Gold Nanoparticles on the Bioelectrocatalytic Parameters of Immobilized Bilirubin Oxidase

Pankratov D.V., Zeifman Y.S., Dudareva А.V., Pankratova G.K., Khlupova M.E., Parunova Y.M., Zajtsev D.N., Bashirova N.F., Popov V.O., Shleev S.V.

Abstract

We unveil experimental evidence that put into question the widely held notion concerning the impact of nanoparticles on the bioelectrocatalytic parameters of enzymatic electrodes. Comparative studies of the bioelectrocatalytic properties of fungal bilirubin oxidase from Myrothecium verrucaria adsorbed on gold electrodes, modified with gold nanoparticles of different diameters, clearly indicate that neither the direct electron transfer rate (standard heterogeneous electron transfer rate constants were calculated to be 31±9 s -1) nor the biocatalytic activity of the adsorbed enzyme (bioelectrocatalytic constants were calculated to be 34±11 s -1) depends on the size of the nanoparticles, which had diameters close to or larger than those of the enzyme molecules.

Acta Naturae. 2014;6(1):102-106
pages 102-106 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies