Patient-Specific Induced Pluripotent Stem Cells for SOD1-Associated Amyotrophic Lateral Sclerosis Pathogenesis Studies

Cover Page

Cite item

Abstract

The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells, called induced pluripotent stem cells (iPSCs), can be an unlimited source of specialized cell types for the body. Thus, autologous somatic cell replacement therapy becomes possible, as well as the generation of in vitro cell models for studying the mechanisms of disease pathogenesis and drug discovery. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder that leads to a loss of upper and lower motor neurons. About 10% of cases are genetically inherited, and the most common familial form of ALS is associated with mutations in the SOD1 gene. We used the reprogramming technology to generate induced pluripotent stem cells with patients with familial ALS. Patient-specific iPS cells were obtained by both integration and transgene-free delivery methods of reprogramming transcription factors. These iPS cells have the properties of pluripotent cells and are capable of direct differentiation into motor neurons.

About the authors

I. V. Chestkov

Vavilov Institute of General Genetics RAS

Author for correspondence.
Email: ichestkov@vigg.ru
Russian Federation

E. A. Vasilieva

Vavilov Institute of General Genetics RAS

Email: ichestkov@vigg.ru
Russian Federation

S. N. Illarioshkin

Research Center of Neurology RAMS

Email: ichestkov@vigg.ru
Russian Federation

M. A. Lagarkova

Vavilov Institute of General Genetics RAS

Email: ichestkov@vigg.ru
Russian Federation

S. L. Kiselev

Vavilov Institute of General Genetics RAS

Email: ichestkov@vigg.ru
Russian Federation

References

  1. Frey D., Schneider C., Xu L., Borg J., Spooren W., Caroni P. // J. Neurosci. 2000. V. 20. P. 2534-2542.
  2. Liu J., Lillo C., Jonsson P.A., Vande Velde C., Ward C.M., Miller T.M., Subramaniam J.R., Rothstein J.D., Marklund S., Andersen P.M., et al. // Neuron. 2004. V. 43. P. 5-17.
  3. Boillee S., Yamanaka K., Lobsiger C.S., Copeland N.G., Jenkins N.A., Kassiotis G., Kollias G., Cleveland D.W. // Science. 2006. V. 312. P. 1389-1392.
  4. Wong P.C., Pardo C.A., Borchelt D.R., Lee M.K., Copeland N.G., Jenkins N.A., Sisodia S.S., Cleveland D.W., Price D.L. // Neuron. 1995. V. 14. P. 1105-1116.
  5. Howland D.S., Liu J., She Y., Goad B., Maragakis N.J., Kim B., Erickson J., Kulik J., DeVito L., Psaltis G., et al. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 1604-1609.
  6. Bruijn L.I., Becher M.W., Lee M.K., Anderson K.L., Jenkins N.A., Copeland N.G., Sisodia S.S., Rothstein J.D., Borchelt D.R., Price D.L., et al. // Neuron. 1997. V. 18. P. 327-338.
  7. Jonsson P.A., Ernhill K., Andersen P.M., Bergemalm D., Brannstrom T., Gredal O., Nilsson P., Marklund S.L. // Brain. 2004. V. 127. P. 73-88.
  8. Reaume A.G., Elliott J.L., Hoffman E.K., Kowall N.W., Ferrante R.J., Siwek D.R., Wilcox H.M., Flood D.G., Beal M.F., Brown R.H. Jr., et al. // Nat. Genet. 1996. V. 13. P. 43-47.
  9. Subramaniam J.R., Lyons W.E., Liu J., Bartnikas T.B., Rothstein J., Price D.L., Cleveland D.W., Gitlin J.D., Wong P.C. // Nat. Neurosci. 2002. V. 5. № 4. P. 301-307.
  10. Wang J., Slunt H., Gonzales V., Fromholt D., Coonfield M., Copeland N.G., Jenkins N.A., Borchelt D.R. // Hum. Mol. Genet. 2003. V. 12. P. 2753-2764.
  11. Kabashi E., Valdmanis P.N., Dion P., Rouleau G.A. // Ann. Neurol. 2007. V. 62. № 6. P. 553-559.
  12. Gruzman A., Wood W.L., Alpert E., Prasad M.D., Miller R.G., Rothstein J.D., Bowser R., Hamilton R., Wood T.D., Cleveland D.W., et al. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 12524-12529.
  13. Pramatarova A., Laganiere J., Roussel J., Brisebois K., Rouleauet G.A. // J. Neurosci. 2001. V. 21. P. 3369-3374.
  14. Nagai M., Re D.B., Nagata T., Chalazonitis А., Jessell Т.М., Wichterle Н., Przedborski S. // Nat. Neurosci. 2007. V. 10. P. 615- 622.
  15. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. // Cell. 2007. V. 131. № 5. P. 861-872.
  16. Shutova M.V., Bogomazova A.N., Lagarkova M.A., Kiselev S.L. // Acta Naturae. 2009. V. 1. № 2. P. 91-92.
  17. Lagarkova M.A., Shutova M.V., Bogomazova A.N., Vassina E.M., Glazov E.A., Zhang P., Rizvanov A.A., Chestkov I.V., Kiselev S.L. // Cell Cycle. 2010. V. 9. 937-946.
  18. Shutova M.V., Chestkov I.V., Bogomazova A.N., Lagarkova M.A., Kiselev S.L. // Springer Protocols Handbook ser. 2012. P. 133-149.
  19. Egawa N., Kitaoka S., Tsukita K., Naitoh M., Takahashi K., Yamamoto T., Adachi F., Kondo T., Okita K., Asaka I., et al. // Sci. Transl. Med. 2012. V. 4. № 145. P. 145.
  20. Krencik R., Zhang S.C. // Nat. Protoc. 2011. V. 6. № 11. 1710-1717.
  21. Shi Y., Desponts C., Do J.T., Hahm H.S., Scholer H.R., Ding S. // Cell Stem Cell. 2008. V. 3. P. 568-574.
  22. Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A. // Nat. Biotechnol. 2008. V. 26. P. 795-797.
  23. Hanna J., Markoulaki S., Schorderet P., Carey B.W., Beard C., Wernig M., Creyghton M.P., Steine E.J., Cassady J. P., Foreman R., et al. // Cell. 2008. V. 133. № 2. P. 250-264.
  24. Wichterle H., Lieberam I., Porter J.A., Jessell T.M. // Cell. 2002. V. 110. № 3. P. 385-397.
  25. Dimos J.T., Rodolfa K.T., Niakan K.K., Weisenthal L.M., Mitsumoto H., Chung W., Croft G.F., Saphier G., Leibel R., Goland R., et al. // Science. 2008. V. 321. № 5893. P. 1218-1221.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Chestkov I.V., Vasilieva E.A., Illarioshkin S.N., Lagarkova M.A., Kiselev S.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies