Vol 15, No 3 (2023)
- Year: 2023
- Published: 30.10.2023
- Articles: 10
- URL: https://actanaturae.ru/2075-8251/issue/view/881
Reviews
Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous “rediscovery” of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Chromosomal Aberrations as a Biological Phenomenon in Human Embryonic Development
Abstract
Frequent chromosomal abnormalities are a distinctive feature of early embryonic development in mammals, especially humans. Aneuploidy is considered as a contributing factor to failed embryo implantation and spontaneous abortions. In the case of chromosomal mosaicism, its effect on the potency of embryos to normally develop has not been sufficiently studied. Although, a significant percentage of chromosomal defects in early human embryos are currently believed to be associated with the features of clinical and laboratory protocols, in this review, we focus on the biological mechanisms associated with chromosomal abnormalities. In particular, we address the main events in oocyte meiosis that affects not only the genetic status of an unfertilized oocyte, but also further embryo viability, and analyze the features of first cleavage divisions and the causes of frequent chromosomal errors in early embryonic development. In addition, we discuss current data on self-correction of the chromosomal status in early embryos.
The Role of Autophagy in the Development of Pathological Conditions of the Body
Abstract
Autophagy is the process of lysosomal elimination of the cell organelles, cytoplasmic sites, and pathogenic microorganisms that enter the cell. This process is associated with both cell death regulation and an increase in cell survival chances. Autophagy is involved in the development of various diseases (Crohn disease, cancer, atherosclerosis, etc.). For these reasons, it is of significant interest to establish the molecular targets involved in autophagy regulation and the factors that mediate its participation in pathogenesis. The review describes the potential molecular mechanisms involved in the regulation of autophagy, its contribution to the vital cell activity in a healthy organism, and pathologies.
Research Articles
The Rurikids: The First Experience of Reconstructing the Genetic Portrait of the Ruling Family of Medieval Rus’ Based on Paleogenomic Data
Abstract
The Rurikids were the reigning house of Rus’, its principalities and, ultimately the Tsardom of Russia, for seven centuries: from the IX to the end of the XVI century. According to the Primary Chronicle (the Tale of Bygone Years), the main chronicle of Rus’, the Rurik dynasty was founded by the Varangian prince Rurik, invited to reign in Novgorod in 862, but still there is no direct genetic evidence of the origin of the early Rurikids. This research, for the first time, provides a genome-wide paleogenetic analysis of bone remains belonging to one of the Rurikids, Prince Dmitry Alexandrovich (?–1294), the son of the Grand Prince of Vladimir Alexander Yaroslavich Nevsky (1221–1263). It has been established that his Y chromosome belongs to the N1a haplogroup. Most of the modern Rurikids, according to their genealogies, belonging to the N1a haplogroup, have the most similar variants of Y chromosomes to each other, as well as to the Y chromosome of Prince Dmitry Alexandrovich. Genome-wide data of the medieval and modern Rurikids unequivocally indicates that they belong to the N1a haplogroup of the Y chromosome, starting at least from the XI century (since the time of Prince Yaroslav the Wise). All the other alleged Rurikids, both ancient and modern, being carriers of other haplogroups (R1a, I2a), possess high heterogeneity of the sequence of Y chromosomes, meaning that we cannot confirm their common ancestry. The most probable ancestors of Prince Dmitry Alexandrovich in the male line were the men who left the burial ground Bolshoy Oleny Island on the coast of the Kola Peninsula about 3,600 years ago. The reconstruction of the genome of Prince Dmitry Alexandrovich indicates the contribution of three ancestral components to his origin: (1) the early medieval population of the east of Scandinavia from the island of Oland, (2) representatives of the steppe nomadic peoples of the Eurasian steppes of the Iron Age or the early medieval population of central Europe (steppe nomads from the territory of Hungary), and (3) the ancient East-Eurasian component. Reliable statistics were also obtained when the Scandinavians were replaced with the Medieval Russian Slavic populations of the XI century. Thus, for the first time, we have shown the complex nature of interethnic interactions in the formation of the nobility of medieval Rus’ on the example of the ancient Rurikid.
CNA Landscape of HER2-Negative Breast Cancer in Anthracycline-Based Neoadjuvant Chemotherapy Regimens
Abstract
Critical evaluation of how and when to include anthracyclines in preoperative chemotherapy is becoming more relevant in an era when the molecular genetic approach not only allows for the development of biologically targeted therapeutics, but also implies the ability to select the patients likely to benefit from certain cytotoxic agents. Changes in the copy number aberration (CNA) landscape of luminal B HER2-negative (HER2−) breast cancer (BC) during anthracycline-based neoadjuvant chemotherapy (NAC) regimens were studied in order to identify groups of potential CNA markers of objective response and CNA markers for predicting the development of hematogenous metastasis. Comparison of CNA frequencies depending on the response to NAC showed that objective response was observed in a larger number of deletions in the 11q22.3 and 11q23.1 loci (p = 0.004). Comparison of CNA frequencies in groups of patients after treatment showed that hematogenous metastasis was observed with a greater number of amplifications in the 9p22.2 locus (p = 0.003) and with a greater number of deletions in the 9p21.3 locus (p = 0.03). Potential predictive CNA markers of objective response and prognostic CNA markers of hematogenous metastasis in anthracycline-based NAC regimens have been identified.
Analysis of the Association between the Tgfb1 Gene Haplotype and Liver Diseases in Children
Abstract
Transforming growth factor-β1 (TGF-β1), a cytokine with immunosuppressive and pro-fibrogenic activity, is a potential marker of infection, liver transplant rejection, and fibrosis. Its levels in the blood and tissues depend on many factors; however, the role of gene polymorphism is still unclear. In this work, the distribution frequency of three single nucleotide polymorphism (SNP) variants of the Tgfb1 gene, namely rs1800469, rs1800470, and rs1800471, was studied in children with end-stage liver disease (ESLD). The study included 225 pediatric liver recipients aged 1 month to 16 years (median, 8 months), including 100 boys and 125 girls, and 198 healthy individuals aged 32.7 ± 9.6 years, including 78 men and 120 women. The indication for liver transplantation in children was ESLD, which was mostly caused by congenital and inherited liver diseases. SNPs were detected by real-time polymerase chain reaction using TaqMan probes and DNA isolated from peripheral blood. SNP frequency distribution was in Hardy–Weinberg equilibrium and did not differ between children with liver diseases and the healthy ones. Analysis of the SNPs frequency based on allelic interaction models did not reveal any differences between patients and the healthy individuals. Evaluation of linkage disequilibrium for Tgfb1 polymorphic variant pairs revealed a statistically significant linkage between all studied variants. Seven haplotypes, which are variants of SNP combinations, were observed in the studied groups of patients and healthy individuals. A total of 80% of the group had three haplotypes, whose frequencies did not differ between patients and the healthy individuals. Significant differences were found in the frequency of the haplotypes A-A-C, G-G-C, and G-A-G (at rs1800469, rs1800470, and rs1800471, respectively), which were observed up to 11 times more often in recipients compared to the healthy individuals. It is possible that these haplotypes are ESLD-predisposing variants, which may also contribute to the development of complications after liver transplantation in children.
Effect of the ati Gene Deletion on the Pathogenicity and Immunogenicity of the Vaccinia Virus
Abstract
Among the nonvirion proteins of the vaccinia virus (VACV), a 94-kDa long protein is most abundantly present; the protein is a truncated form of the 150-kDa A-type inclusion (ATI) protein of the cowpox virus encoded by the ati gene. This VACV protein does not form intracellular ATIs, being as it is a major immunogen upon infection/immunization of humans or animals with the VACV. Antibodies specific to this protein are not virus-neutralizing. The present study focused on the effect of the production of this nonstructural major immunogenic VACV protein on the manifestation of pathogenicity and immunogenicity of the virus in the BALB/c mouse model of infection. In order to introduce a targeted deletion into the VACV LIVP genome, the recombinant integration/deletion plasmid p∆ati was constructed and further used to generate the recombinant virus LIVP∆ati. The pathogenicity of the VACV LIVP and LIVP∆ati strains was studied in 3-week-old mice. The mice were intranasally infected with the viruses at a dose of 107 pfu; 50% of the animals infected with the parent LIVP strain died, while infection with the LIVP∆ati strain led to the death of only 20% of the mice. Intradermal vaccination of mice aged 6–7 weeks with the LIVP∆ati virus statistically significantly increased the production of VACV-specific IgG, compared to that after intradermal vaccination with VACV LIVP. Meanwhile, no differences were noted in the cell-mediated immune response to the vaccination of mice with VACV LIVP or LIVP∆ati, which was assessed by ELISpot according to the number of splenocytes producing IFN-γ in response to stimulation with virus-specific peptides. Intranasal infection of mice with lethal doses of the cowpox virus or the ectromelia virus on day 60 post-immunization with the studied VACV variants demonstrated that the mutant LIVP∆ati elicits a stronger protective response compared to the parent LIVP.
Attenuating Neuronal Autophagy Alleviates Inflammatory Injury in OGD-Deprived Co-culture of HT22 with BV2
Abstract
Neuronal CX3CL1 suppressed microglial inflammation by binding to its receptor CX3CR1 expressed on microglia. Neuronal autophagy was prominently activated by cerebral ischemia, whereas CX3CL1 expression in autophagic neurons was conversely down-regulated to exacerbate microglial inflammation. Accordingly, this study was meant to investigate whether ischemia-activated microglial inflammation could be repressed by promoting CX3CL1 expression via the attenuation of neuronal autophagy. Immunofluorescence showed that autophagy predominantly occurred in neurons but barely in microglia. Western blot and immunofluorescence demonstrated that attenuating HT22 autophagy significantly increased its CX3CL1 expression and subsequently mitigated the BV2-mediated inflammatory responses, as indicated by decreased inflammatory factors of NF-κB-p65, IL-6, IL-1β, TNF-α, and PGE2. Meanwhile, CCK-8, Nissl staining, and FJC staining showed that an OGD (Oxygen-glycogen deprivation)-created neuronal injury was greatly alleviated by CX3CL1-suppressed microglial inflammation. Contrarily, elevating HT22 autophagy markedly decreased its CX3CL1 expression, which consequently worsened microglial inflammation and the neuronal injury. Our data suggests that attenuating neuronal autophagy may be an effective method to alleviate a microglial inflammatory injury after an ischemic stroke.
A DNA Replication Stress-Based Prognostic Model for Lung Adenocarcinoma
Abstract
Tumor cells endure continuous DNA replication stress, which opens the way to cancer development. Despite previous research, the prognostic implications of DNA replication stress on lung adenocarcinoma (LUAD) have yet to be investigated. Here, we aimed to investigate the potential of DNA replication stress-related genes (DNARSs) in predicting the prognosis of individuals with LUAD. Differentially expressed genes (DEGs) originated from the TCGA-LUAD dataset, and we constructed a 10-gene LUAD prognostic model based on DNARSs-related DEGs (DRSDs) using Cox regression analysis. The receiver operating characteristic (ROC) curve demonstrated excellent predictive capability for the LUAD prognostic model, while the Kaplan-Meier survival curve indicated a poorer prognosis in a high-risk (HR) group. Combined with clinical data, the Riskscore was found to be an independent predictor of LUAD prognosis. By incorporating Riskscore and clinical data, we developed a nomogram that demonstrated a capacity to predict overall survival and exhibited clinical utility, which was validated through the calibration curve, ROC curve, and decision curve analysis curve tests, confirming its effectiveness in prognostic evaluation. Immune analysis revealed that individuals belonging to the low-risk (LR) group exhibited a greater abundance of immune cell infiltration and higher levels of immune function. We calculated the immunopheno score and TIDE scores and tested them on the IMvigor210 and GSE78220 cohorts and found that individuals categorized in the LR group exhibited a higher likelihood of deriving therapeutic benefits from immunotherapy intervention. Additionally, we predicted that patients classified in the HR group would demonstrate enhanced sensitivity to Docetaxel using anti-tumor drugs. To summarize, we successfully developed and validated a prognostic model for LUAD by incorporating DNA replication stress as a key factor.