Vol 12, No 4 (2020)

Reviews

L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming

Kovina A.P., Petrova N.V., Razin S.V., Kantidze O.L.

Abstract

Recent studies have significantly expanded our understanding of the mechanisms of L-ascorbic acid (ASC, vitamin C) action, leading to the emergence of several hypotheses that validate the possibility of using ASC in clinical practice. ASC may be considered an epigenetic drug capable of reducing aberrant DNA and histone hypermethylation, which could be helpful in the treatment of some cancers and neurodegenerative diseases. The clinical potency of ASC is also associated with regenerative medicine; in particular with the production of iPSCs. The effect of ASC on somatic cell reprogramming is most convincingly explained by a combined enhancement of the activity of the enzymes involved in the active demethylation of DNA and histones. This review describes how ASC can affect the epigenetic status of a cell and how it can be used in anticancer therapy and stem cell reprogramming.

Acta Naturae. 2020;12(4):5-14
pages 5-14 views

The Functions and Mechanisms of Action of Insulators in the Genomes of Higher Eukaryotes

Melnikova L.S., Georgiev P.G., Golovnin A.K.

Abstract

The mechanisms underlying long-range interactions between chromatin regions and the principles of chromosomal architecture formation are currently under extensive scrutiny. A special class of regulatory elements known as insulators is believed to be involved in the regulation of specific long-range interactions between enhancers and promoters. This review focuses on the insulators of Drosophila and mammals, and it also briefly characterizes the proteins responsible for their functional activity. It was initially believed that the main properties of insulators are blocking of enhancers and the formation of independent transcription domains. We present experimental data proving that the chromatin loops formed by insulators play only an auxiliary role in enhancer blocking. The review also discusses the mechanisms involved in the formation of topologically associating domains and their role in the formation of the chromosomal architecture and regulation of gene transcription.

Acta Naturae. 2020;12(4):15-33
pages 15-33 views

Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection

Razin S.V., Gavrilov A.A., Iarovaia O.V.

Abstract

The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.

Acta Naturae. 2020;12(4):34-46
pages 34-46 views

The Delivery of Biologically Active Agents into the Nuclei of Target Cells for the Purposes of Translational Medicine

Sobolev A.S.

Abstract

Development of vehicles for the subcellular targeted delivery of biologically active agents is very promising for the purposes of translational medicine. This review summarizes the results obtained by researchers from the Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology RAS, which allowed them to design the core technology: modular nanotransporters. This approach ensures high efficacy and cell specificity for different anti-cancer agents, as they are delivered into the most vulnerable subcellular compartment within the cells of interest and makes it possible for antibody mimetics to penetrate into a compartment of interest within the target cells (“diving antibodies”). Furthermore, polyplexes, complexes of polycationic block copolymers of DNA, have been developed and characterized. These complexes are efficient both in vitro and in vivo and demonstrate predominant transfection of actively dividing cells.

Acta Naturae. 2020;12(4):47-56
pages 47-56 views

The DPF Domain As a Unique Structural Unit Participating in Transcriptional Activation, Cell Differentiation, and Malignant Transformation

Soshnikova N.V., Sheynov A.A., Tatarskiy E.V., Georgieva S.G.

Abstract

The DPF (double PHD finger) domain consists of two PHD fingers organized in tandem. The two PHD-finger domains within a DPF form a single structure that interacts with the modification of the N-terminal histone fragment in a way different from that for single PHD fingers. Several histone modifications interacting with the DPF domain have already been identified. They include acetylation of H3K14 and H3K9, as well as crotonylation of H3K14. These modifications are found predominantly in transcriptionally active chromatin. Proteins containing DPF belong to two classes of protein complexes, which are the transcriptional coactivators involved in the regulation of the chromatin structure. These are the histone acetyltransferase complex belonging to the MYST family and the SWI/SNF chromatin-remodeling complex. The DPF domain is responsible for the specificity of the interactions between these complexes and chromatin. Proteins containing DPF play a crucial role in the activation of the transcription of a number of genes expressed during the development of an organism. These genes are important in the differentiation and malignant transformation of mammalian cells.

Acta Naturae. 2020;12(4):57-65
pages 57-65 views

Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine

Chetverina D.A., Lomaev D.V., Erokhin M.M.

Abstract

Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.

Acta Naturae. 2020;12(4):66-85
pages 66-85 views

Research Articles

Involvement of the N Domain Residues E34, K35, and R38 in the Functionally Active Structure of Escherichia coli Lon Protease

Andrianova A.G., Kudzhaev A.M., Abrikosova V.A., Gustchina A.E., Smirnov I.V., Rotanova T.V.

Abstract

ATP-dependent Lon protease of Escherichia coli (EcLon), which belongs to the superfamily of AAA+ proteins, is a key component of the cellular proteome quality control system. It is responsible for the cleavage of mutant, damaged, and short-lived regulatory proteins that are potentially dangerous for the cell. EcLon functions as a homooligomer whose subunits contain a central characteristic AAA+ module, a C-terminal protease domain, and an N-terminal non-catalytic region composed of the actual N-terminal domain and the inserted α-helical domain. An analysis of the N domain crystal structure suggested a potential involvement of residues E34, K35, and R38 in the formation of stable and active EcLon. We prepared and studied a triple mutant LonEKR in which these residues were replaced with alanine. The introduced substitutions were shown to affect the conformational stability and nucleotide-induced intercenter allosteric interactions, as well as the formation of the proper protein binding site.

Acta Naturae. 2020;12(4):86-97
pages 86-97 views

A Simplified Streptozotocin-Induced Diabetes Model in Nude Mice

Gvazava I.G., Kosykh A.V., Rogovaya O.S., Popova O.P., Sobyanin K.A., Khrushchev A.K., Timofeev A.V., Vorotelyak E.A.

Abstract

Preclinical studies of human cellular and tissue-based products (HCT/Ps) for transplantation therapy of type 1 diabetes mellitus (T1DM) necessarily involve animal models, particularly mouse models of diabetes induced by streptozotocin (STZ). These models should mimic the clinical and metabolic manifestations of T1DM in humans (face validity) and be similar to T1DM in terms of the pathogenetic mechanism (construct validity). Furthermore, since HCT/Ps contain human cells, modeling of diabetes in immune-deficient animals is obligatory. Here we describe the most simplified diabetes model in Nude mice. Diabetes was induced in 31 males by a single intraperitoneal injection of STZ in normal saline at a medium-to-high dose of 150 mg/kg body weight. Fourteen control animals received only saline. Non-fasting plasma glucose (PG) levels were measured periodically for 50 days. All STZ-treated mice survived beyond 50 days. By day 15 after STZ administration, 22 of 31 (71%) mice developed stable diabetes based on the following criteria: (1) non-fasting PG ≥ 15 mmol/L on consecutive measurements up until day 50; (2) no diabetes remission. The mean non-fasting PG in mice with stable diabetes over the period of 35 days was equal to 25.7 mmol/L. On day 50, mean plasma insulin concentration, mean pancreatic insulin content, and the average number of β-cells in pancreatic islets were 2.6, 8.4, and 50 times lower, respectively, than in the control animals. We consider that our Nude mouse model of diabetes meets face validity and construct validity criteria and can be used in preclinical studies of HCT/Ps.

Acta Naturae. 2020;12(4):98-104
pages 98-104 views

Intracellular Acidification Suppresses Synaptic Vesicle Mobilization in the Motor Nerve Terminals

Zefirov A.L., Mukhametzyanov R.D., Zakharov A.V., Mukhutdinova K.A., Odnoshivkina U.O., Petrov A.M.

Abstract

Intracellular protons play a special role in the regulation of presynaptic processes, since the functioning of synaptic vesicles and endosomes depends on their acidification by the H+-pump. Furthermore, transient acidification of the intraterminal space occurs during synaptic activity. Using microelectrode recording of postsynaptic responses (an indicator of neurotransmitter release) and exo-endocytic marker FM1-43, we studied the effects of intracellular acidification with propionate on the presynaptic events underlying neurotransmitter release. Cytoplasmic acidification led to a marked decrease in neurotransmitter release during the first minute of a 20-Hz stimulation in the neuromuscular junctions of mouse diaphragm and frog cutaneous pectoris muscle. This was accompanied by a reduction in the FM1-43 loss during synaptic vesicle exocytosis in response to the stimulation. Estimation of the endocytic uptake of FM1-43 showed no disruption in synaptic vesicle endocytosis. Acidification completely prevented the action of the cell-membrane permeable compound 24-hydroxycholesterol, which can enhance synaptic vesicle mobilization. Thus, the obtained results suggest that an increase in [H+]in negatively regulates neurotransmission due to the suppression of synaptic vesicle delivery to the sites of exocytosis at high activity. This mechanism can be a part of the negative feedback loop in regulating neurotransmitter release.

Acta Naturae. 2020;12(4):105-113
pages 105-113 views

Drosophila Zinc Finger Protein CG9890 Is Colocalized with Chromatin Modifying and Remodeling Complexes on Gene Promoters and Involved in Transcription Regulation

Fursova N.A., Mazina M.Y., Nikolenko J.V., Vorobyova N.E., Krasnov A.N.

Abstract

In this work, we conducted a genome-wide study of the zinc finger protein CG9890 and showed that it is localized mostly on the promoters of active genes. The CG9890 binding sites are low-nucleosome-density regions and are colocalized with the chromatin modifying and remodeling complexes SAGA and dSWI/SNF, as well as with the ORC replication complex. The CG9890 protein was shown to be involved in the regulation of the expression of some genes on the promoters of which it is located, with the ecdysone cascade genes accounting for a significant percentage of these genes. Thus, the CG9890 protein is a new member of the transcriptional network which is localized on active promoters, interacts with the main transcription and replication complexes, and is involved in the regulation of both basal and inducible transcription.

Acta Naturae. 2020;12(4):114-119
pages 114-119 views

The Influence of an Elevated Production of Extracellular Enveloped Virions of the Vaccinia Virus on Its Properties in Infected Mice

Shchelkunov S.N., Yakubitskiy S.N., Bauer T.V., Sergeev A.A., Kabanov A.S., Bulichev L.E., Yurganova I.A., Odnoshevskiy D.A., Kolosova I.V., Pyankov S.A., Taranov O.S.

Abstract

The modern approach to developing attenuated smallpox vaccines usually consists in targeted inactivation of vaccinia virus (VACV) virulence genes. In this work, we studied how an elevated production of extracellular enveloped virions (EEVs) and the route of mouse infection can influence the virulence and immunogenicity of VACV. The research subject was the LIVP strain, which is used in Russia for smallpox vaccination. Two point mutations causing an elevated production of EEVs compared with the parental LIVP strain were inserted into the sequence of the VACV A34R gene. The created mutant LIVP-A34R strain showed lower neurovirulence in an intracerebral injection test and elevated antibody production in the intradermal injection method. This VACV variant can be a promising platform for developing an attenuated, highly immunogenic vaccine against smallpox and other orthopoxvirus infections. It can also be used as a vector for designing live-attenuated recombinant polyvalent vaccines against various infectious diseases.

Acta Naturae. 2020;12(4):120-132
pages 120-132 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies