Construction of a pIX-modified Adenovirus Vector Able to Effectively Bind to Nanoantibodies for Targeting
- Authors: Garas M.N.1, Tillib S.V.2, Zubkova O.V.1, Rogozhin V.N.1,3, Ivanova T.I.2, Vasilev L.A.2, Logunov D.Y.1, Shmarov M.M.1, Tutykhina I.L.1, Esmagambetov I.B.1, Gribova I.Y.1, Bandelyuk A.S.1, Naroditsky B.S.1, Gintsburg A.L.1
-
Affiliations:
- N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
- Institute of Gene Biology, Russian Academy of Sciences
- K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotehnology
- Issue: Vol 6, No 2 (2014)
- Pages: 95-105
- Section: Research Articles
- Submitted: 17.01.2020
- Published: 15.06.2014
- URL: https://actanaturae.ru/2075-8251/article/view/10557
- DOI: https://doi.org/10.32607/20758251-2014-6-2-95-105
- ID: 10557
Cite item
Abstract
Current targeting strategies for genetic vectors imply the creation of a specific vector for every targeted receptor, which is time-consuming and expensive. Therefore, the development of a universal vector system whose surface can specifically bind molecules to provide efficient targeting is of particular interest. In this study, we propose a new approach in creating targeted vectors based on the genome of human adenovirus serotype 5 carrying the modified gene of the capsid protein pIX (Ad5-EGFP-pIX-ER): recombinant pseudoadenoviral nanoparticles (RPANs). The surfaces of such RPANs are able to bind properly modified chimeric nanoantibodies that specifically recognize a particular target antigen (carcinoembryonic antigen (CEA)) with high affinity. The efficient binding of nanoantibodies (аСЕА-RE) to the RPAN capsid surfaces has been demonstrated by ELISA. The ability of the constructed vector to deliver target genes has been confirmed by experiments with the tumor cell lines A549 and Lim1215 expressing CEA. It has been shown that Ad5-EGFP-pIX-ER carrying аСЕА-RE on its surface penetrates into the tumor cell lines A549 and Lim1215 via the CAR-independent pathway three times more efficiently than unmodified RPAN and Ad5-EGFP-pIX-ER without nanoantibodies on the capsid surface. Thus, RPAN Ad5-EGFP-pIX-ER is a universal platform that may be useful for targeted gene delivery in specific cells due to “nanoantibody-modified RPAN” binding.
Keywords
About the authors
M. N. Garas
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Author for correspondence.
Email: max.garas@yandex.ru
Russian Federation
S. V. Tillib
Institute of Gene Biology, Russian Academy of Sciences
Email: max.garas@yandex.ru
Russian Federation
O. V. Zubkova
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
V. N. Rogozhin
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation; K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotehnology
Email: max.garas@yandex.ru
Russian Federation
T. I. Ivanova
Institute of Gene Biology, Russian Academy of Sciences
Email: max.garas@yandex.ru
Russian Federation
L. A. Vasilev
Institute of Gene Biology, Russian Academy of Sciences
Email: max.garas@yandex.ru
Russian Federation
D. Yu. Logunov
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
M. M. Shmarov
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
I. L. Tutykhina
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
I. B. Esmagambetov
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
I. Yu. Gribova
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
A. S. Bandelyuk
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
B. S. Naroditsky
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
A. L. Gintsburg
N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Email: max.garas@yandex.ru
Russian Federation
References
- Bonnekoh B., Greenhalgh D.A., Chen S.H., Block A., Rich S.S., Krieg T., Woo S.L., Roop D.R. // J Invest Dermatol. 1998, V.110, №6, P.867-871
- Benihoud K., Yeh P., Perricaudet M. // Curr Opin Biotechnol. 1999, V.10, №5, P.440-447
- // The Journal of Gene Medicine. Clinical Trials Database. url www.abedia.com/wiley/vectors.php
- Zhang Y., Bergelson J.M. // Virology Journal 2005, V.79, №19, P.12125-12131
- Vindrieux D., Le Corre L., Hsieh T.J., Metivier R., Escobar P., Caicedo A., Brigitte M., Lazennec G. // Endocr. Relat. Cancer. 2011, V.18, №3, P.311-321
- Sakurai F., Mizuguchi H., Yamaguchi T., Hayakawa T. // Molecular Therapy 2003, V.8, №5, P.813-821
- Breidenbach M., Rein D.T., Everts M., Glasgow J.N., Wang M., Passineau M.J. // Gene Therapy. 2005, V.12, №5, P.187-193
- Korokhov N., Mikheeva G., Krendelshchikov A., Belousova N., Simonenko V., Krendelshchikova V., Pereboev A., Kotov A., Kotova O. // Virology Journal 2003, V.77, №24, P.12931-12940
- Terao S., Acharya B., Suzuki T., Aoi T., Naoe M., Hamada K., Mizuguchi H., Gotoh A. // Anticancer Res. 2009, V.29, №8, P.2997-3001
- Hiwasa K., Nagaya H., Terao S., Acharya B., Hamada K., Mizuguchi H., Gotoh A. // Anticancer Res. 2012, V.32, №8, P.3137-3140
- Hongju W., Han T., Belousova N., Krasnykh V., Kashentseva E., Dmitriev I., Kataram M., Mahasreshti P. J., Curiel D. T. // Virology Journal 2005, V.79, №6, P.3382-3390
- Vigne E., Mahfouz I., Dedieu J.F., Brie A., Perricaudet M., Yeh P. // Virology Journal 1999, V.73, №6, P.5156-5161
- Dmitriev I.P., Kashentseva E.A., Curiel D.T. // Virology Journal 2002, V.76, №14, P.6893-6899
- Vellinga J., Van der Heijdt S., Hoeben R.C. // J Gen Virol. 2005, V.86, №6, P.1581-1588
- Davison E., Diaz R.M., Hart I.R., Santis G., Marshall J.F. // Virology Journal 1997, V.71, №80, P.6204-6207
- Iyer S.V., Davis D.L., Seal S.N., Burch J.B. // Mol Cell Biol. 1991, V.11, №10, P.4863-4875
- Moll J.R., Ruviniv S.B., Pastan I., Vinson C. // Protein Science. 2001, V.10, P.649-655
- Glasgow J.N., Mikheeva G., Krasnykh V., Curiel D.T. // PLoS One. 2009, V.4, №12, P.8355
- Tillib S.V. // Molecular biology. 2011, V.45, P.77-85
- Tillib S., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Saakyan S.A., Gribova I.Y., Tutykhina I.L., Sedova E.S., Lysenko A.A., Shmarov M.M., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. // Antiviral Research. 2013, V.97, P.245-254
- Gribova I.Y., Tillib S.V., Tutykhina I.L., Shmarov M.M., Logunov D.Y., Verkhovskaia L.V., Naroditsky B.S., Gintsburg A.L. // Acta Naturae. 2011, V.3, P.66-72
- Tutykhina I., Sedova E., Gribova I., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Lysenko A., Shmarov M., Logunov D., Naroditsky B., Tillib S., Gintsburg A. // Antiviral Research. 2013, V.97, P.717-720
- Shmarov M.M., Cherenova L.V., Shashkova E.V., Logunov D.U., Verkhovskaia L.V., Kapitonov A.V., Neugodova G.L., Doronin K.K., Naroditski B.S. // Mol. Gen. Mikrobiol. Virusol. 2002, V.2, P.30-35
- Hamers-Casterman C., Atarhouch T., Muyldermans S. // Nature 1993, V.363, P.446-448
- Nguyen V.K., Desmyter A., Muyldermans S. // Adv. Immunol. 2001, V.79, P.261-296
- Saerens D., Kinne J., Bosmans E., Wernery U., Muyldermans S., Conrath K. J. // Biol Chem. 2004, V.279, P.51965-51972
- Rothbauer U., Zolghadr K., Tillib S. // Nature Methods. 2006, V.3, P.887-889
- Tillib S., Ivanova T.I., Vasilev L.A. // Acta Naturae. 2010, V.2(3), P.100-108
- Ghosh-Choudhury G., Haj-Ahmad Y., Graham F.L. // EMBO J. 1987, V.6, №6, P.1733-1739
- Vellinga J., Rabelink M.J., Cramer S.J., van den Wollenberg D.J., Van der Meulen H., Leppard K.N., Fallaux F.J., Hoeben R.C. // Virology Journal 2004, V.78, №7, P.3470-3479
- Boulanger P., Lemay P., Blair G.E., Russell W.C. // J. Gen. Virol. 1979, V.44, №3, P.783-800
- Mathis J.M., Bhatia S., Khandelwal A., Kovesdi I., Lokitz S.J., Odaka Y., Takalkar A.M., Terry T., Curiel D.T. // PLoS One. 2011, V.6, №2, P.16792
- Campos S.K., Parrott M.B., Barry M.A. // Molecular Therapy 2004, V.9, №6, P.942-954
- Tang Y., Le L.P., Matthews Q.L., Han T., Wu H., Curiel D.T. // Virology 2008, V.377, №2, P.391-400
- Davison E., Kirby I., Whitehouse J., Hart I., Marshall J.F., Santis G. // J Gene Med. 2001, V.3, №6, P.550-559
- Simpson H.D., Barras F. // Journal of Bacteriology 1999, V.181, №15, P.4611-4616