Construction of a pIX-modified Adenovirus Vector Able to Effectively Bind to Nanoantibodies for Targeting

Cover Page
  • Authors: Garas M.N.1, Tillib S.V.2, Zubkova O.V.1, Rogozhin V.N.1,3, Ivanova T.I.2, Vasilev L.A.2, Logunov D.Y.1, Shmarov M.M.1, Tutykhina I.L.1, Esmagambetov I.B.1, Gribova I.Y.1, Bandelyuk A.S.1, Naroditsky B.S.1, Gintsburg A.L.1
  • Affiliations:
    1. N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
    2. Institute of Gene Biology, Russian Academy of Sciences
    3. K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotehnology
  • Issue: Vol 6, No 2 (2014)
  • Pages: 95-105
  • Section: Research Articles
  • URL: http://actanaturae.ru/2075-8251/article/view/10557
  • DOI: https://doi.org/10.32607/20758251-2014-6-2-95-105
  • Cite item

Abstract


Current targeting strategies for genetic vectors imply the creation of a specific vector for every targeted receptor, which is time-consuming and expensive. Therefore, the development of a universal vector system whose surface can specifically bind molecules to provide efficient targeting is of particular interest. In this study, we propose a new approach in creating targeted vectors based on the genome of human adenovirus serotype 5 carrying the modified gene of the capsid protein pIX (Ad5-EGFP-pIX-ER): recombinant pseudoadenoviral nanoparticles (RPANs). The surfaces of such RPANs are able to bind properly modified chimeric nanoantibodies that specifically recognize a particular target antigen (carcinoembryonic antigen (CEA)) with high affinity. The efficient binding of nanoantibodies (аСЕА-RE) to the RPAN capsid surfaces has been demonstrated by ELISA. The ability of the constructed vector to deliver target genes has been confirmed by experiments with the tumor cell lines A549 and Lim1215 expressing CEA. It has been shown that Ad5-EGFP-pIX-ER carrying аСЕА-RE on its surface penetrates into the tumor cell lines A549 and Lim1215 via the CAR-independent pathway three times more efficiently than unmodified RPAN and Ad5-EGFP-pIX-ER without nanoantibodies on the capsid surface. Thus, RPAN Ad5-EGFP-pIX-ER is a universal platform that may be useful for targeted gene delivery in specific cells due to “nanoantibody-modified RPAN” binding.


M. N. Garas

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Author for correspondence.
Email: max.garas@yandex.ru

Russian Federation

S. V. Tillib

Institute of Gene Biology, Russian Academy of Sciences

Email: max.garas@yandex.ru

Russian Federation

O. V. Zubkova

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

V. N. Rogozhin

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation; K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotehnology

Email: max.garas@yandex.ru

Russian Federation

T. I. Ivanova

Institute of Gene Biology, Russian Academy of Sciences

Email: max.garas@yandex.ru

Russian Federation

L. A. Vasilev

Institute of Gene Biology, Russian Academy of Sciences

Email: max.garas@yandex.ru

Russian Federation

D. Yu. Logunov

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

M. M. Shmarov

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

I. L. Tutykhina

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

I. B. Esmagambetov

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

I. Yu. Gribova

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

A. S. Bandelyuk

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

B. S. Naroditsky

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

A. L. Gintsburg

N.F. Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation

Email: max.garas@yandex.ru

Russian Federation

  1. Bonnekoh B., Greenhalgh D.A., Chen S.H., Block A., Rich S.S., Krieg T., Woo S.L., Roop D.R. // J Invest Dermatol. 1998, V.110, №6, P.867-871
  2. Benihoud K., Yeh P., Perricaudet M. // Curr Opin Biotechnol. 1999, V.10, №5, P.440-447
  3. // The Journal of Gene Medicine. Clinical Trials Database. url www.abedia.com/wiley/vectors.php
  4. Zhang Y., Bergelson J.M. // Virology Journal 2005, V.79, №19, P.12125-12131
  5. Vindrieux D., Le Corre L., Hsieh T.J., Metivier R., Escobar P., Caicedo A., Brigitte M., Lazennec G. // Endocr. Relat. Cancer. 2011, V.18, №3, P.311-321
  6. Sakurai F., Mizuguchi H., Yamaguchi T., Hayakawa T. // Molecular Therapy 2003, V.8, №5, P.813-821
  7. Breidenbach M., Rein D.T., Everts M., Glasgow J.N., Wang M., Passineau M.J. // Gene Therapy. 2005, V.12, №5, P.187-193
  8. Korokhov N., Mikheeva G., Krendelshchikov A., Belousova N., Simonenko V., Krendelshchikova V., Pereboev A., Kotov A., Kotova O. // Virology Journal 2003, V.77, №24, P.12931-12940
  9. Terao S., Acharya B., Suzuki T., Aoi T., Naoe M., Hamada K., Mizuguchi H., Gotoh A. // Anticancer Res. 2009, V.29, №8, P.2997-3001
  10. Hiwasa K., Nagaya H., Terao S., Acharya B., Hamada K., Mizuguchi H., Gotoh A. // Anticancer Res. 2012, V.32, №8, P.3137-3140
  11. Hongju W., Han T., Belousova N., Krasnykh V., Kashentseva E., Dmitriev I., Kataram M., Mahasreshti P. J., Curiel D. T. // Virology Journal 2005, V.79, №6, P.3382-3390
  12. Vigne E., Mahfouz I., Dedieu J.F., Brie A., Perricaudet M., Yeh P. // Virology Journal 1999, V.73, №6, P.5156-5161
  13. Dmitriev I.P., Kashentseva E.A., Curiel D.T. // Virology Journal 2002, V.76, №14, P.6893-6899
  14. Vellinga J., Van der Heijdt S., Hoeben R.C. // J Gen Virol. 2005, V.86, №6, P.1581-1588
  15. Davison E., Diaz R.M., Hart I.R., Santis G., Marshall J.F. // Virology Journal 1997, V.71, №80, P.6204-6207
  16. Iyer S.V., Davis D.L., Seal S.N., Burch J.B. // Mol Cell Biol. 1991, V.11, №10, P.4863-4875
  17. Moll J.R., Ruviniv S.B., Pastan I., Vinson C. // Protein Science. 2001, V.10, P.649-655
  18. Glasgow J.N., Mikheeva G., Krasnykh V., Curiel D.T. // PLoS One. 2009, V.4, №12, P.8355
  19. Tillib S.V. // Molecular biology. 2011, V.45, P.77-85
  20. Tillib S., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Saakyan S.A., Gribova I.Y., Tutykhina I.L., Sedova E.S., Lysenko A.A., Shmarov M.M., Logunov D.Y., Naroditsky B.S., Gintsburg A.L. // Antiviral Research. 2013, V.97, P.245-254
  21. Gribova I.Y., Tillib S.V., Tutykhina I.L., Shmarov M.M., Logunov D.Y., Verkhovskaia L.V., Naroditsky B.S., Gintsburg A.L. // Acta Naturae. 2011, V.3, P.66-72
  22. Tutykhina I., Sedova E., Gribova I., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Lysenko A., Shmarov M., Logunov D., Naroditsky B., Tillib S., Gintsburg A. // Antiviral Research. 2013, V.97, P.717-720
  23. Shmarov M.M., Cherenova L.V., Shashkova E.V., Logunov D.U., Verkhovskaia L.V., Kapitonov A.V., Neugodova G.L., Doronin K.K., Naroditski B.S. // Mol. Gen. Mikrobiol. Virusol. 2002, V.2, P.30-35
  24. Hamers-Casterman C., Atarhouch T., Muyldermans S. // Nature 1993, V.363, P.446-448
  25. Nguyen V.K., Desmyter A., Muyldermans S. // Adv. Immunol. 2001, V.79, P.261-296
  26. Saerens D., Kinne J., Bosmans E., Wernery U., Muyldermans S., Conrath K. J. // Biol Chem. 2004, V.279, P.51965-51972
  27. Rothbauer U., Zolghadr K., Tillib S. // Nature Methods. 2006, V.3, P.887-889
  28. Tillib S., Ivanova T.I., Vasilev L.A. // Acta Naturae. 2010, V.2(3), P.100-108
  29. Ghosh-Choudhury G., Haj-Ahmad Y., Graham F.L. // EMBO J. 1987, V.6, №6, P.1733-1739
  30. Vellinga J., Rabelink M.J., Cramer S.J., van den Wollenberg D.J., Van der Meulen H., Leppard K.N., Fallaux F.J., Hoeben R.C. // Virology Journal 2004, V.78, №7, P.3470-3479
  31. Boulanger P., Lemay P., Blair G.E., Russell W.C. // J. Gen. Virol. 1979, V.44, №3, P.783-800
  32. Mathis J.M., Bhatia S., Khandelwal A., Kovesdi I., Lokitz S.J., Odaka Y., Takalkar A.M., Terry T., Curiel D.T. // PLoS One. 2011, V.6, №2, P.16792
  33. Campos S.K., Parrott M.B., Barry M.A. // Molecular Therapy 2004, V.9, №6, P.942-954
  34. Tang Y., Le L.P., Matthews Q.L., Han T., Wu H., Curiel D.T. // Virology 2008, V.377, №2, P.391-400
  35. Davison E., Kirby I., Whitehouse J., Hart I., Marshall J.F., Santis G. // J Gene Med. 2001, V.3, №6, P.550-559
  36. Simpson H.D., Barras F. // Journal of Bacteriology 1999, V.181, №15, P.4611-4616

Views

Abstract - 123

PDF (English) - 48

PDF (Russian) - 54

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2014 Garas M.N., Tillib S.V., Zubkova O.V., Rogozhin V.N., Ivanova T.I., Vasilev L.A., Logunov D.Y., Shmarov M.M., Tutykhina I.L., Esmagambetov I.B., Gribova I.Y., Bandelyuk A.S., Naroditsky B.S., Gintsburg A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies