Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis
- Authors: Skvortsov T.A.1, Ignatov D.V.1, Majorov K.B.2, Apt A.S.2, Azhikina T.L.1
-
Affiliations:
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry
- Central Institute for Tuberculosis
- Issue: Vol 5, No 2 (2013)
- Pages: 62-69
- Section: Research Articles
- Submitted: 17.01.2020
- Published: 15.06.2013
- URL: https://actanaturae.ru/2075-8251/article/view/10600
- DOI: https://doi.org/10.32607/20758251-2013-5-2-62-69
- ID: 10600
Cite item
Abstract
Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, and correcting. In this study, we describe the results of genome-wide transcriptional profiling of the major human bacterial pathogen M. tuberculosis during its persistence in lungs. Two mouse strains differing in their susceptibility to tuberculosis were used for experimental infection with M. tuberculosis. Mycobacterial transcriptomes obtained from the infected tissues of the mice at two different time points were analyzed by deep sequencing and compared. It was hypothesized that the changes in the M. tuberculosis transcriptome may attest to the activation of the metabolism of lipids and amino acids, transition to anaerobic respiration, and increased expression of the factors modulating the immune response. A total of 209 genes were determined whose expression increased with disease progression in both host strains (commonly upregulated genes, CUG). Among them, the genes related to the functional categories of lipid metabolism, cell wall, and cell processes are of great interest. It was assumed that the products of these genes are involved in M. tuberculosis adaptation to the host immune system defense, thus being potential targets for drug development.
About the authors
T. A. Skvortsov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry
Author for correspondence.
Email: timofey@ibch.ru
Россия
D. V. Ignatov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry
Email: timofey@ibch.ru
Россия
K. B. Majorov
Central Institute for Tuberculosis
Email: timofey@ibch.ru
Россия
A. S. Apt
Central Institute for Tuberculosis
Email: timofey@ibch.ru
Россия
T. L. Azhikina
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry
Email: timofey@ibch.ru
Россия
References
- Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E. 3rd // Nature 1998, V.393, №6685, P.537-544
- Wilson M., DeRisi J., Kristensen H.H., Imboden P., Rane S., Brown P.O., Schoolnik G.K. // Proc. Natl. Acad. Sci. USA. 1999, V.96, №22, P.12833-12838
- Butcher P.D. // Tuberculosis (Edinb.). 2004, V.84, №3-4, P.131-137
- Kendall S.L., Rison S.C., Movahedzadeh F., Frita R., Stoker N.G. // Trends Microbiol. 2004, V.12, №12, P.537-544
- Skvortsov T.A., Azhikina T.L. // Russian Journal of Bioorganic Chemistry. 2010, V.36, №5, P.550-559
- Skvortsov T.A., Azhikina T.L. // ssian Journal of Bioorganic Chemistry. 2012, V.38, №4, P.391-405
- Ignatov D.V., Skvortsov T.A., Majorov K.B., Apt A.S., Azhikina T.L. // Acta Naturae 2010, V.2, №3, P.78-84
- Azhikina T.L., Skvortsov T.A., Radaeva T.V., Mardanov A.V., Ravin N.V., Apt A.S., Sverdlov E.D. // Biotechniques. 2010, V.48, №2, P.139-144
- Audic S., Claverie J.M. // Genome Res. 1997, V.7, №10, P.986-995
- Kondratieva E., Logunova N., Majorov K., Averbakh M., Apt A. // PLoS One 2010, V.5, №5, P.e10515
- Arnvig K., Young D. // RN A Biology 2012, V.9, №4, P.427-436
- Arnvig K.B., Comas I., Thomson N.R., Houghton J., Boshoff H.I., Croucher N.J., Rose G., Perkins T.T., Parkhill J., Dougan G. // PLoS Pathog. 2011, V.7, №11, P.e1002342
- Sassetti C.M., Boyd D.H., Rubin E.J. // Mol. Microbiol. 2003, V.48, №1, P.77-84
- Shi L., Sohaskey C.D., Kana B.D., Dawes S., North R.J., Mizrahi V., Gennaro M.L. // Proc. Natl. Acad. Sci. USA. 2005, V.102, №43, P.15629-15634
- Stokes R.W., Waddell S.J. // Future Microbiol. 2009, V.4, №10, P.1317-1335
- Waddell S.J. // Drug Discov. Today: Dis. Mech. 2010, V.7, №1, P.e61-e73
- Karboul A., Mazza A., Gey van Pittius N.C., Ho J.L., Brousseau R., Mardassi H. // Journal of Bacteriology 2008, V.190, №23, P.7838-7846
- Hinchey J., Jeon B.Y., Alley H., Chen B., Goldberg M., Derrick S., Morris S., Jacobs W.R., Jr. I.O., Porcelli S.A., Lee S. // PLoS One 2011, V.6, №1, P.e15857
- Homolka S., Niemann S., Russell D.G., Rohde K.H. // PLoS Pathog. 2010, V.6, №7, P.e1000988
- Ward S.K., Abomoelak B., Marcus S., Talaat A.M. // Front. Microbiol. 2010, V.1, P.121
- Raman K., Vashisht R., Chandra N. // Mol. BioSystems 2009, V.5, №12, P.1740-1751
- Raman K., Yeturu K., Chandra N. // BMC Systems Biol. 2008, V.2, №1, P.109
- Kalapanulak S. // High quality genome-scale metabolic network reconstruction of mycobacterium tuberculosis and comparison with human metabolic network: application for drug targets identification. Edinburgh: Univ. of Edinburgh 2009
- Nisa S.Y. // ParA: a novel target for anti-tubercular drug discovery // Wellington: Victoria Univ. of Wellington 2010
- Srivastava V., Jain A., Srivastava B.S., Srivastava R. // Tuberculosis 2008, V.88, №3, P.171-177
- Srivastava V., Rouanet C., Srivastava R., Ramalingam B., Locht C., Srivastava B.S. // Microbiology 2007, V.153, №3, P.659-666
- Boshoff H.I.M., Myers T.G., Copp B.R., McNeil M.R., Wilson M.A., Barry C.E. // J. Biol. Chem. 2004, V.279, №38, P.40174-4014
- Shi T., Fu T., Xie J. // Curr. Microbiology 2011, V.63, №5, P.470-476