The Mechanism of Choline-Mediated Inhibition of Acetylcholine Release in Mouse Motor Synapses
- Authors: Gaydukov A.E.1, Bogacheva P.O.1, Tarasova E.O.1, Balezina O.P.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 6, No 4 (2014)
- Pages: 110-115
- Section: Research Articles
- Submitted: 17.01.2020
- Published: 15.12.2014
- URL: https://actanaturae.ru/2075-8251/article/view/10534
- DOI: https://doi.org/10.32607/20758251-2014-6-4-110-115
- ID: 10534
Cite item
Abstract
The mechanism of action of tonically applied choline, the agonist of α7 nicotinic acetylcholine receptors (nAChRs), to the spontaneous and evoked release of a neurotransmitter in mouse motor synapses in diaphragm neuromuscular preparations using intracellular microelectrode recordings of miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) was studied. Exogenous choline was shown to exhibit a presynaptic inhibitory effect on the amplitude and quantal content of EPPs for the activity of neuromuscular junction evoked by single and rhythmic stimuli. This effect was inhibited either by antagonists of α7-nAChRs, such as methyllycaconitine and α-cobratoxin, or by blocking SK-type calcium-activated potassium (K Ca) channels with apamin or blocking intraterminal ryanodine receptors with ryanodine. A hypothesis was put forward that choline in mouse motoneuron nerve terminals can activate presynaptic α7-nAChRs, followed by the release of the stored calcium through ryanodine receptors and activation of SK-type KCa channels, resulting in sustained decay of the quantal content of the evoked neurotransmitter release.
About the authors
A. E. Gaydukov
Lomonosov Moscow State University
Author for correspondence.
Email: gaydukov@gmail.com
Russian Federation
P. O. Bogacheva
Lomonosov Moscow State University
Email: gaydukov@gmail.com
Russian Federation
E. O. Tarasova
Lomonosov Moscow State University
Email: gaydukov@gmail.com
Russian Federation
O. P. Balezina
Lomonosov Moscow State University
Email: gaydukov@gmail.com
Russian Federation
References
- Katz B., Miledi R. // J. Physiol. 1973, V.231, №3, P.549-574
- Albuquerque E.X., Pereira E.F., Alkondon M., Rogers S.W. // Physiol. Rev. 2009, V.89, №1, P.73-120
- Sine S.M. // Physiol. Rev. 2012, V.92, №3, P.1189-1234
- Vizi E.S., Somogyi G.T. // Br. J. Pharmacol. 1989, V.97, №1, P.65-70
- Tian L., Prior C., Dempster J., Marshall I.G. // J. Physiol. 1994, V.476, №3, P.517-529
- Tsuneki H., Kimura I., Dezaki K., Kimura M., Sala C., Fumagalli G. // Neurosci. Lett. 1995, V.196, №1-2, P.13-16
- Faria M., Oliveira L., Timoteo M.A., Lobo M.G., Correia-De-Sa P. // Synapse. 2003, V.49, №2, P.77-88
- Tian L., Prior C., Dempster J., Marshall I.G. // Br. J. Pharmacol. 1997, V.122, №6, P.1025-1034
- Dehkordi O., Haxhiu M.A., Millis R.M., Dennis G.C., Kc P., Jafri A., Khajavi M., Trouth C.O., Zaidi S.I. // Respir. Physiol. Neurobiol. 2004, V.141, №1, P.21-34
- Castro N.G., Albuquerque E.X. // Biophys. J. 1995, V.68, №2, P.516-524
- Fucile S. // Cell Calcium. 2004, V.35, №1, P.1-8
- Uteshev V.V. // Adv. Exp. Med. Biol. 2012, V.740, P.603-638
- Gray R., Rajan A.S., Radcliffe K.A., Yakehiro M., Dani J.A. // Nature 1996, V.383, №6602, P.713-716
- Sharma G., Vijayaraghavan S. // Neuron. 2003, V.38, №6, P.929-939
- Jiang L., Role L.W. // J. Neurophysiol. 2008, V.99, №4, P.1988-1999
- Kalappa B.I., Feng L., Kem W.R., Gusev A.G., Uteshev V.V. // Am. J. Physiol. Cell Physiol. 2011, V.301, №2, P.347-361
- Prior C., Singh S. // Br. J. Pharmacol. 2000, V.129, №6, P.1067-1074
- Balezina O.P., Fedorin V.V., Gaydukov A.Ye. // Bulletin of experimental biology and medicine. 2006, V.142, №1, P.17-21
- Alkondon M., Albuquerque E.X. // Eur. J. Pharmacol. 1990, V.191, №3, P.505-506
- Servent D., Antil-Delbeke S., Gaillard C., Corringer P.J., Changeux J.P., Menez A. // Eur. J. Pharmacol. 2000, V.393, №1-3, P.197-204
- Tsetlin V.I., Hucho F. // FEBS Lett. 2004, V.557, №1-3, P.9-13
- McLachlan E.M., Martin A.R. // J. Physiol. 1981, V.311, P.307-324
- Yuhas W.A., Fuchs P.A. // J. Comp. Physiol A. 1999, V.185, №5, P.455-462
- Griguoli M., Scuri R., Ragozzino D., Cherubini E. // Eur. J. Neurosci. 2009, V.30, №6, P.1011-1022
- Adelman J.P., Maylie J., Sah P. // Annu. Rev. Physiol. 2012, V.74, P.245-269
- Wright M.C., Potluri S., Wang X., Dentcheva E., Gautam D., Tessler A., Wess J., Rich M.M., Son Y.J. // J. Neurosci. 2009, V.29, №47, P.14942-14955
- Ulus I.H., Millington W.R., Buyukuysal R.L., Kiran B.K. // Biochem. Pharmacol. 1988, V.37, №14, P.2747-2755
- Fischer V., Both M., Draguhn A., Egorov A.V. // J. Neurochem. 2014, V.129, №5, P.792-805
- Minic J., Molgo J., Karlsson E., Krejci E. // Eur. J. Neurosci. 2002, V.15, №3, P.439-448
- Santafe M.M., Lanuza M.A., Garcia N., Tomas J. // Eur. J. Neurosci. 2006, V.23, №8, P.2048-2056
- Alkondon M., Pereira E.F., Cortes W.S., Maelicke A., Albuquerque E.X. // Eur. J. Neurosci. 1997, V.9, №12, P.2734-2742
- Papke R.L., Bencherif M., Lippiello P. // Neurosci. Lett. 1996, V.213, №3, P.201-204
- Papke R.L., Porter Papke J.K. // Br. J. Pharmacol. 2002, V.137, №1, P.49-61
- Giniatullin R., Nistri A., Yakel J.L. // Trends Neurosci. 2005, V.28, №7, P.371-378
- Zhong C., Talmage D.A., Role L.W. // PLoS One. 2013, V.8, №12, P.e82719
- Roncarati R., Di Chio M., Sava A., Terstappen G.C., Fumagalli G. // Neuroscience. 2001, V.104, №1, P.253-262
- Balezina O.P., Bukiya A.N., Lapteva V.I. // Russian Journal of Physiology. 2005, V.91, №1, P.61-70
- Dickinson J.A., Kew J.N., Wonnacott S. // Mol. Pharmacol. 2008, V.74, №2, P.348-359
- Shen J.X., Yakel J.L. // Acta Pharmacol. Sin. 2009, V.30, №6, P.673-680
- Lioudyno M., Hiel H., Kong J.H., Katz E., Waldman E., Parameshwaran-Iyer S., Glowatzki E., Fuchs P.A. // J. Neurosci. 2004, V.24, №49, P.11160-11164
- Descarries L., Gisiger V., Steriade M. // Prog. Neurobiol. 1997, V.53, №5, P.603-625
- Jones I.W., Wonnacott S. // J. Neurosci. 2004, V.24, №50, P.11244-11252