Interaction with Serum Albumin As a Factor of the Photodynamic Efficacy of Novel Bacteriopurpurinimide Derivatives
- Authors: Аkimova А.V.1, Rychkov G.N.2,3, Grin М.А.4, Filippova N.A.5, Golovina G.V.1, Durandin N.A.1, Vinogradov A.M.1, Коkrashvili Т.А.6, Mironov А.F.4, Shtil А.А.5, Кuzmin V.А.1
-
Affiliations:
- N.M. Emanuel Institute of Biochemical Physics
- Petersburg Nuclear Physics Institute
- St.Petersburg State Polytechnical University
- M.V. Lomonosov Moscow State University of Fine Chemical Technologies
- N.N. Blokhin Russian Cancer Research Center
- Georgian Technical University
- Issue: Vol 7, No 1 (2015)
- Pages: 109-116
- Section: Research Articles
- Submitted: 17.01.2020
- Published: 15.03.2015
- URL: https://actanaturae.ru/2075-8251/article/view/10519
- DOI: https://doi.org/10.32607/20758251-2015-7-1-109-116
- ID: 10519
Cite item
Abstract
Optimization of the chemical structure of antitumor photosensitizers (PSs) is aimed at increasing their affinity to a transport protein, albumin and irreversible light-induced tumor cell damage. Bacteriopurpurinimide derivatives are promising PSs thanks to their ability to absorb light in the near infrared spectral region. Using spectrophotometry, we show that two new bacteriopurpurinimide derivatives with different substituents at the N atoms of the imide exocycle and the pyrrole ring A are capable of forming non-covalent complexes with human serum albumin (HSA). The association constant (calculated with the Benesi-Hildebrand equation) for N-ethoxybacteriopurpurinimide ethyloxime (compound 1) is higher than that for the methyl ether of methoxybacteriopurpurinimide (compound 2) (1.18×10 5 M-1 vs. 1.26×10 4 M -1, respectively). Molecular modeling provides details of the atomic interactions between 1 and 2 and amino acid residues in the FA1 binding site of HSA. The ethoxy group stabilizes the position of 1 within this site due to hydrophobic interaction with the protein. The higher affinity of 1 for HSA makes this compound more potent than 2 in photodynamic therapy for cultured human colon carcinoma cells. Photoactivation of 1 and 2 in cells induces rapid (within a few minutes of irradiation) necrosis. This mechanism of cell death may be efficient for eliminating tumors resistant to other therapies.
About the authors
А. V. Аkimova
N.M. Emanuel Institute of Biochemical Physics
Author for correspondence.
Email: alexa_karpenko@mail.ru
Russian Federation
G. N. Rychkov
Petersburg Nuclear Physics Institute; St.Petersburg State Polytechnical University
Email: alexa_karpenko@mail.ru
Russian Federation
М. А. Grin
M.V. Lomonosov Moscow State University of Fine Chemical Technologies
Email: alexa_karpenko@mail.ru
Russian Federation
N. A. Filippova
N.N. Blokhin Russian Cancer Research Center
Email: alexa_karpenko@mail.ru
Russian Federation
G. V. Golovina
N.M. Emanuel Institute of Biochemical Physics
Email: alexa_karpenko@mail.ru
Russian Federation
N. A. Durandin
N.M. Emanuel Institute of Biochemical Physics
Email: alexa_karpenko@mail.ru
Russian Federation
A. M. Vinogradov
N.M. Emanuel Institute of Biochemical Physics
Email: alexa_karpenko@mail.ru
Russian Federation
Т. А. Коkrashvili
Georgian Technical University
Email: alexa_karpenko@mail.ru
Georgia
А. F. Mironov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies
Email: alexa_karpenko@mail.ru
Russian Federation
А. А. Shtil
N.N. Blokhin Russian Cancer Research Center
Email: alexa_karpenko@mail.ru
Russian Federation
V. А. Кuzmin
N.M. Emanuel Institute of Biochemical Physics
Email: alexa_karpenko@mail.ru
Russian Federation
References
- Phillips D. // Int. Rev. J. 1997, V.22, №3-4, P.3-50
- Ashur I., Goldschmidt R., Pinkas I., Salomon I., Szewczyk G., Sarna T., Scherz A. // J. Phys. Chem. A. 2009, V.113, P.8027-8037
- Josefsen L.B., Boyle R.W. // Theranostics. 2012, V.3, №9, P.916-966
- Chen Y., Li G., Pandey R.K. // Curr. Org. Chem. 2004, №8, P.1105-1134
- Moisenovich M.M., Ol’shevskaya V.A., Rokitskaya T.I., Ramonova A.A., Nikitina R.G., Savchenko A.N., Tatarskiy V.V., Kaplan M.A., Kalinin V.N., Kotova E.A. // PLoS ONE.2010. V. 5, 2010, V.5, №9, P.e12717
- Grin M.A., Mironov A.F., Shtil A.A. // Anti-Cancer Agents Med. Chem. 2008, V.8, №6, P.683-697
- Oertel M.l., Schastak S.I., Tannapfel A., Hermann R., Tannapfel A., Hermann R., Sack U., Mossner J., Berr F. // J. Photochem. Photobiol. B: Biology. 2003, V.71, P.1-10
- Dąbrowski J.M., Arnaut L.G., Pereira M.M., Urbańska K., Simões S., Stochel G., Cortes L. // Free Rad. Biol. Med. 2012, V.52, P.1188-1200
- Meerovich I.G.., Grin M.A., Tsiprovskiy A.G., Meerovich G.A., Oborotova N.A., Loschenov V.B., Baryshnikov A.Y., Mironov A.F. // Russian Biotherapeutic J. 2007, V.6, №1, P.22
- Ol’shevskaya V.A., Nikitina R.G., Guiul’malieva M.A., Zaitsev A.V., Luzgina V.N., Kononova E.G., Ivanov O.G., Burmistrova N.V., Kaplan M.F., Kalinin V.N. // Org. Biomol. Chem. 2006, V.4, P.3815-3821
- Ol’shevskaya V.A., Nikitina R.G., Savchenko A.N., Malshakova M.V., Vinogradov A.M., Golovina G.V., Belykh D. V., Kutchin A.V., Kaplan M.A., Kalinin V.N. // Bioorg. Med. Chem. 2009, V.17, №3, P.1297-1306
- Ol’shevskaya V.A., Savchenko A.N., Zaitsev A. V., Kononova E. G., Petrovskii P.V., Ramonova A.A., Tatarskiy V.V. Jr., Moisenovich M.M., Kalinin V.N., Shtil A.A. // J. Organometal. Chem. 2009, V.694, №11, P.1632-1637
- Pshenkina N.N. // Med. Academ. J. 2011, V.11, №3, P.3-15
- Sharman W.M., van Lier J.E., Allen C.M. // Adv. Drug Delivery Rev. 2004, V.56, P.53-76
- Tsuchida T., Zheng G., Pandey R.K., Potter W.R., Bellnier D.A., Henderson B.W., Kato H., Dougherty T.J. // Photochem. Photobiol. 1997, V.66, №2, P.224-228
- Mironov A.F., Grin M.A., Tsiprovskiy A.G., Meerovich G.A., Meerovish I.G., Oborotova N.A., Treshalina E.M., Loschenov V.B., Baryshnikov A.Y., Tsigankov A.A. // Patent of Russia № 2411943. Bull. № 29. 2011
- Mironov A.F., Grin M.A., Tsiprovskiy A.G. // J. Porph. Phthalocyan. 2002, V.6, №5, P.358-361
- Benesi H.A., Hildebrant J.H. // J. Am. Chem. Soc. 1949, V.71, P.2703-2707
- Abagyan R., Totrov M., Kuznetsov D. // J. Comput. Chem. 1994, V.15, P.488-506
- Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Chem. Inform. 2012, V.4, №1, P.17
- Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. 1993, V.14, №11, P.1347-1363
- Huzinaga S., Andzelm J., Klobukowski M., Radzio-Andzelm E., Sakai Y., Tatewaki H. // Gaussian Basis Sets for Molecular Calculations.Amsterdam: Elsevier 1984, P.240
- Roothaan C.C.J. // Rev. Modern Phys. 1951, V.23, №2, P.69
- Wardell M., Wang Z., Ho J.X., Robert J., Ruker F., Ruble J., Carter D.C. // Biochem. Biophys. Res. Commun. 2002, V.291, №4, P.813-819
- Fernández-Recio J., Totrov M., Abagyan R. // Proteins: Structure, Function, and Bioinformatics. 2003, V.52, №1, P.113-117
- Totrov M. and Abagyan R. // Proteins. 1997, S1, P.215-220
- Totrov M., Abagyan R. // Peptide Sci. 2001, V.60, №2, P.124-133
- Eisfeld A., Briggs J.S. // Chem. Phys 2006, V.324, P.376-384
- Yao-Bing Y., Wang Y.N., Ma J.B. // Spectrochim. Acta 2006, V.64, PtA, P.1032-1038
- Ascenzi P., Fasano M. // IUBMB Life. 2009, V.61, №12, P.1118-1122
- Garg A.D., Bose M., Ahmed M.I., Bonass W.A., Wood S.R. // PLoS ONE. 2012, V.7, №4, P.e34475
- Chin W.W., Heng P.W., Bhuvaneswari R., Lau W.K., Olivo M. // Photochem. 2006, №5, P.1031-1037
- Calin M.A., Paraska S.V. // J. Optoelectron. Adv. Mat. 2006, V.8, №3, P.1173-1179
- Evans C.L., Abu-Yousif Adnan O., Jin P. Yong., Klein O.J., Celli J.P., Rizvi I., Zheng X., Hasan T. // PLoS ONE. 2011, V.6, №8, P.e23434