Interaction with Serum Albumin As a Factor of the Photodynamic Efficacy of Novel Bacteriopurpurinimide Derivatives

Cover Page

Cite item

Abstract

Optimization of the chemical structure of antitumor photosensitizers (PSs) is aimed at increasing their affinity to a transport protein, albumin and irreversible light-induced tumor cell damage. Bacteriopurpurinimide derivatives are promising PSs thanks to their ability to absorb light in the near infrared spectral region. Using spectrophotometry, we show that two new bacteriopurpurinimide derivatives with different substituents at the N atoms of the imide exocycle and the pyrrole ring A are capable of forming non-covalent complexes with human serum albumin (HSA). The association constant (calculated with the Benesi-Hildebrand equation) for N-ethoxybacteriopurpurinimide ethyloxime (compound 1) is higher than that for the methyl ether of methoxybacteriopurpurinimide (compound 2) (1.18×10 5 M-1 vs. 1.26×10 4 M -1, respectively). Molecular modeling provides details of the atomic interactions between 1 and 2 and amino acid residues in the FA1 binding site of HSA. The ethoxy group stabilizes the position of 1 within this site due to hydrophobic interaction with the protein. The higher affinity of 1 for HSA makes this compound more potent than 2 in photodynamic therapy for cultured human colon carcinoma cells. Photoactivation of 1 and 2 in cells induces rapid (within a few minutes of irradiation) necrosis. This mechanism of cell death may be efficient for eliminating tumors resistant to other therapies.

About the authors

А. V. Аkimova

N.M. Emanuel Institute of Biochemical Physics

Author for correspondence.
Email: alexa_karpenko@mail.ru
Россия

G. N. Rychkov

Petersburg Nuclear Physics Institute; St.Petersburg State Polytechnical University

Email: alexa_karpenko@mail.ru
Россия

М. А. Grin

M.V. Lomonosov Moscow State University of Fine Chemical Technologies

Email: alexa_karpenko@mail.ru
Россия

N. A. Filippova

N.N. Blokhin Russian Cancer Research Center

Email: alexa_karpenko@mail.ru
Россия

G. V. Golovina

N.M. Emanuel Institute of Biochemical Physics

Email: alexa_karpenko@mail.ru
Россия

N. A. Durandin

N.M. Emanuel Institute of Biochemical Physics

Email: alexa_karpenko@mail.ru
Россия

A. M. Vinogradov

N.M. Emanuel Institute of Biochemical Physics

Email: alexa_karpenko@mail.ru
Россия

Т. А. Коkrashvili

Georgian Technical University

Email: alexa_karpenko@mail.ru
Грузия

А. F. Mironov

M.V. Lomonosov Moscow State University of Fine Chemical Technologies

Email: alexa_karpenko@mail.ru
Россия

А. А. Shtil

N.N. Blokhin Russian Cancer Research Center

Email: alexa_karpenko@mail.ru
Россия

V. А. Кuzmin

N.M. Emanuel Institute of Biochemical Physics

Email: alexa_karpenko@mail.ru
Россия

References

  1. Phillips D. // Int. Rev. J. 1997, V.22, №3-4, P.3-50
  2. Ashur I., Goldschmidt R., Pinkas I., Salomon I., Szewczyk G., Sarna T., Scherz A. // J. Phys. Chem. A. 2009, V.113, P.8027-8037
  3. Josefsen L.B., Boyle R.W. // Theranostics. 2012, V.3, №9, P.916-966
  4. Chen Y., Li G., Pandey R.K. // Curr. Org. Chem. 2004, №8, P.1105-1134
  5. Moisenovich M.M., Ol’shevskaya V.A., Rokitskaya T.I., Ramonova A.A., Nikitina R.G., Savchenko A.N., Tatarskiy V.V., Kaplan M.A., Kalinin V.N., Kotova E.A. // PLoS ONE.2010. V. 5, 2010, V.5, №9, P.e12717
  6. Grin M.A., Mironov A.F., Shtil A.A. // Anti-Cancer Agents Med. Chem. 2008, V.8, №6, P.683-697
  7. Oertel M.l., Schastak S.I., Tannapfel A., Hermann R., Tannapfel A., Hermann R., Sack U., Mossner J., Berr F. // J. Photochem. Photobiol. B: Biology. 2003, V.71, P.1-10
  8. Dąbrowski J.M., Arnaut L.G., Pereira M.M., Urbańska K., Simões S., Stochel G., Cortes L. // Free Rad. Biol. Med. 2012, V.52, P.1188-1200
  9. Meerovich I.G.., Grin M.A., Tsiprovskiy A.G., Meerovich G.A., Oborotova N.A., Loschenov V.B., Baryshnikov A.Y., Mironov A.F. // Russian Biotherapeutic J. 2007, V.6, №1, P.22
  10. Ol’shevskaya V.A., Nikitina R.G., Guiul’malieva M.A., Zaitsev A.V., Luzgina V.N., Kononova E.G., Ivanov O.G., Burmistrova N.V., Kaplan M.F., Kalinin V.N. // Org. Biomol. Chem. 2006, V.4, P.3815-3821
  11. Ol’shevskaya V.A., Nikitina R.G., Savchenko A.N., Malshakova M.V., Vinogradov A.M., Golovina G.V., Belykh D. V., Kutchin A.V., Kaplan M.A., Kalinin V.N. // Bioorg. Med. Chem. 2009, V.17, №3, P.1297-1306
  12. Ol’shevskaya V.A., Savchenko A.N., Zaitsev A. V., Kononova E. G., Petrovskii P.V., Ramonova A.A., Tatarskiy V.V. Jr., Moisenovich M.M., Kalinin V.N., Shtil A.A. // J. Organometal. Chem. 2009, V.694, №11, P.1632-1637
  13. Pshenkina N.N. // Med. Academ. J. 2011, V.11, №3, P.3-15
  14. Sharman W.M., van Lier J.E., Allen C.M. // Adv. Drug Delivery Rev. 2004, V.56, P.53-76
  15. Tsuchida T., Zheng G., Pandey R.K., Potter W.R., Bellnier D.A., Henderson B.W., Kato H., Dougherty T.J. // Photochem. Photobiol. 1997, V.66, №2, P.224-228
  16. Mironov A.F., Grin M.A., Tsiprovskiy A.G., Meerovich G.A., Meerovish I.G., Oborotova N.A., Treshalina E.M., Loschenov V.B., Baryshnikov A.Y., Tsigankov A.A. // Patent of Russia № 2411943. Bull. № 29. 2011
  17. Mironov A.F., Grin M.A., Tsiprovskiy A.G. // J. Porph. Phthalocyan. 2002, V.6, №5, P.358-361
  18. Benesi H.A., Hildebrant J.H. // J. Am. Chem. Soc. 1949, V.71, P.2703-2707
  19. Abagyan R., Totrov M., Kuznetsov D. // J. Comput. Chem. 1994, V.15, P.488-506
  20. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Chem. Inform. 2012, V.4, №1, P.17
  21. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. 1993, V.14, №11, P.1347-1363
  22. Huzinaga S., Andzelm J., Klobukowski M., Radzio-Andzelm E., Sakai Y., Tatewaki H. // Gaussian Basis Sets for Molecular Calculations.Amsterdam: Elsevier 1984, P.240
  23. Roothaan C.C.J. // Rev. Modern Phys. 1951, V.23, №2, P.69
  24. Wardell M., Wang Z., Ho J.X., Robert J., Ruker F., Ruble J., Carter D.C. // Biochem. Biophys. Res. Commun. 2002, V.291, №4, P.813-819
  25. Fernández-Recio J., Totrov M., Abagyan R. // Proteins: Structure, Function, and Bioinformatics. 2003, V.52, №1, P.113-117
  26. Totrov M. and Abagyan R. // Proteins. 1997, S1, P.215-220
  27. Totrov M., Abagyan R. // Peptide Sci. 2001, V.60, №2, P.124-133
  28. Eisfeld A., Briggs J.S. // Chem. Phys 2006, V.324, P.376-384
  29. Yao-Bing Y., Wang Y.N., Ma J.B. // Spectrochim. Acta 2006, V.64, PtA, P.1032-1038
  30. Ascenzi P., Fasano M. // IUBMB Life. 2009, V.61, №12, P.1118-1122
  31. Garg A.D., Bose M., Ahmed M.I., Bonass W.A., Wood S.R. // PLoS ONE. 2012, V.7, №4, P.e34475
  32. Chin W.W., Heng P.W., Bhuvaneswari R., Lau W.K., Olivo M. // Photochem. 2006, №5, P.1031-1037
  33. Calin M.A., Paraska S.V. // J. Optoelectron. Adv. Mat. 2006, V.8, №3, P.1173-1179
  34. Evans C.L., Abu-Yousif Adnan O., Jin P. Yong., Klein O.J., Celli J.P., Rizvi I., Zheng X., Hasan T. // PLoS ONE. 2011, V.6, №8, P.e23434

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Аkimova А.V., Rychkov G.N., Grin М.А., Filippova N.A., Golovina G.V., Durandin N.A., Vinogradov A.M., Коkrashvili Т.А., Mironov А.F., Shtil А.А., Кuzmin V.А.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies