A Novel High-resolving Method for Genomic PCR-fingerprinting of Enterobacteria
- Авторы: Isaeva AS1, Kulikov EE1, Tarasyan KK1, Letarov AV1
-
Учреждения:
- Выпуск: Том 2, № 1 (2010)
- Страницы: 82-87
- Раздел: Статьи
- Дата подачи: 17.01.2020
- Дата публикации: 15.03.2010
- URL: https://actanaturae.ru/2075-8251/article/view/10767
- DOI: https://doi.org/10.32607/20758251-2010-2-1-82-87
- ID: 10767
Цитировать
Аннотация
We developed a novel PCR-fingerprinting system for differentiation of enterobacterial strains using a single oligonucleotide primer IS1tr that matches the inverted terminal repeats of the IS1 insertion element. Compared to widely used BOX-PCR and ribotyping methods, our system features higher resolution allowing differentiation of closely related isolates that appear identical in BOX-PCR and ribotyping but differ in their phage sensitivity. The IS1-profiling system is less sensitive to the quality of the material and equipment used. At the same time, BOX-PCR is more universal and suitable for bacterial strain grouping and reconstruction of the low-distance phylogeny. Thus, our system represents an important supplement to the existing set of tools for bacterial strain differentiation; it is particularly valuable for a detailed investigation of highly divergent and rapidly evolving natural bacterial populations and for studies on coliphage ecology. However, some isolates could not be reliably differentiated by IS1-PCR, because of the low number of bands in their patterns. For improvement of IS1-fingerprinting characteristics, we offer to modify the system by introducing the second primer TR8834 hybridizing to the sequence of a transposase gene that is widely spread in enterobacterial genomes.
Полный текст
A Novel High-resolving Method for Genomic PCR-fingerprinting of Enterobacteria×
Список литературы
- Kislenko V.N., Kolychev N.M. Veterinary microbiology and immunology. V. 1. General microbiology // М.: «KolosS». 2006. P. 124-129.
- Berg R.D. The indigenous gastrointestinal microflora // Trends in Microbiology. 1996. V. 4. № 11. Р. 430-435.
- Blot M. Transposable elements and adaptation of host bacteria // Genetica. 1994. 93. P. 5-12.
- Daly K., Stewart C.S., Flint H.J. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes // FEMS Microbiology Ecology. 2001. № 38. P. 141-151.
- Dombek P.E., Johnson L.K., Zimmerly S.T. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources // Applied and Environmental Microbiology. 2000. V. 66. №.6. P. 2572-2577.
- Golomidova A., Kulikov E., Isaeva A., Manykin A., Letarov A. The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions // Applied and Environmental Microbiology. 2007. V. 73. №.19. Р. 5975-5981.
- Hartl D.L., Boyd E.F. Nonrandom location of IS1 elements in the genomes of natural isolates of Escherichia coli // Molecular Biology and Evolution. 1997. 14. Р. 725-732.
- Holmfeldt K., Middelboe M., Nybroe O., Riemann L. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts // Applied and Environmental Microbiology. 2007. 73. P. 6730-6739.
- Hulton C.S., Higgins C.F., Sharp P.M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria // Molecular Microbiology. Apr. 1991. V. 5. № 4. P. 825-834.
- Johnson J.R., Clabots C. Improved repetitive - element PCR fingerprinting of Salmonella enterica with the use of extremely elevated annealing temperatures // Clinical and Diagnostic Laboratory Immunology. Mar. 2000. Р. 258-264.
- Johnson J.R., O’Bryan T.T. Improved repetitive - element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli // Clinical and Diagnostic Laboratory Immunology, Mar. 2000. P. 265-273.
- Johnson L.K., Brown M.B., Carruthers E.A. Sample size, Library composition, and Genotipic Diversity among natural populations of Escherichia coli from different animals influence accuracy of determing sources of fecal pollution // Applied and Environmental Microbiology. 2004. Р. 4478-4485.
- Lane D.J. 16S/23S rRNA sequencing. In «Nucleic acid techniques in bacterial systematics» // Stackebrandt E. and Goodfellow M. (eds.), United Kingdom, Chichester, John Wiley and Sons. 1991. P. 115-147.
- Poullain V., Gandon S., Brokhurst M.A., Buckling A., Hochberg M.E. The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. // Evolution. 2008. V. 62. № 1. P. 1-11.
- Rademarker J.L.W., and de Bruijn F.J. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computerassisted pattern analysis. In «DNA markers: protocols, applications, and overviews» // Caetano-Anolles G. and Gresshoff PM. (eds.). New York, 1997. Р. 151-171.
- Seurinck S., Verstraete W., Siciliano S.D. Use of 16S - 23S rRNA intergenic spacer region PCR and repetitive extragenic palindromic PCR analyses of Escherichia coli isolates to identify nonpoint fecal sources // Applied and Environmental Microbiology. 2003. P. 4942-4950.
- Shapiro J.A. Mobile genetic elements // Academic Press, Inc. New York, 1983. P. 192.
- Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes // Nucleic Acids Res. 1991. 19. P. 6823-6831.
- Vizvaryova M., Valkova D. Transposons - the useful genetic tools // Biologia. Bratislava. 2004. 59. № 3. P. 309-318.
- Weitz J.S., Hatman H., Levin S.A. Coevolution arms races between bacteria and bacteriophage // Proc Natl Acad Sci. 2005. 102. Р. 9535-9540.
- Woods C.R., Versalovic J., Koeuth T., Lupski J.R. Whole - cell repetitive element sequence - based polymerase chain reaction allows rapid assessment of clonal relationships of bacterial isolates // Journal of clinical microbiology. 1993. Р. 1927-1931