Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo

Cover Page

Cite item

Abstract

Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in living organism are possible using proteins conjugated with near-infrared dyes. In the present study we designed a highly efficient probe based on fluorescent dye self-quenching for monitoring of in vivo biodegradation of recombinant human butyrylcholinesterase. The maximum enhancement of integral fluorescence in response to degradation of an intravenously administered enzyme was observed 6 h after injection. Importantly, excessive butyrylcholinesterase labeling with fluorescent dye results in significant changes in the pharmacokinetic properties of the obtained conjugate. This fact must be taken into consideration during future pharmacokinetic studies using in vivo bioimaging.

About the authors

S. S. Terekhov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: sterekhoff@mail.ru
Russian Federation

I. V. Smirnov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Kazan Federal University

Email: sterekhoff@mail.ru
Russian Federation

O. G. Shamborant

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

M. A. Zenkova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

E. L Chernolovskaya

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

D. V. Gladkikh

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

A. N. Murashev

Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

I. A. Dyachenko

Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino

Email: sterekhoff@mail.ru
Russian Federation

V. D. Knorre

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

A. A. Belogurov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Kazan Federal University; Institute of Gene Biology, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

N. A. Ponomarenko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

S. M. Deyev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

V. V. Vlasov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

A. G. Gabibov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Kazan Federal University; Institute of Gene Biology, Russian Academy of Sciences

Email: sterekhoff@mail.ru
Russian Federation

References

  1. Hoppin J., Orcutt K.D., Hesterman J.Y., Silva M.D., Cheng D., Lackas C., Rusckowski M. // JPET . 2011, V.337, №2, P.350-358
  2. Yuskevich V., Khodarovich Y., Kagarliskiy G., Stremovskiy O., Maksimenko O., Lukash S., Polanovsky O., Deyev S. // Biochimie. 2011, V.93, №3, P.628-630
  3. Sreenivasan V.K., Stremovskiy O.A., Kelf T.A., Heblinski M., Goodchild A.K., Connor M., Deyev S.M., Zvyagin A.V. // Bioconjugate Chem. 2011, V.22, №9, P.1768-1775
  4. Stepanov A.V., Belogurov A.A. Jr., Ponomarenko N.A., Stremovskiy O.A., Kozlov L.V., Bichucher A.M., Dmitriev S.E., Smirnov I.V., Shamborant O.G., Balabashin D.S. // PLoS One. 2011, V.6, №6, P.e20991
  5. Orlova N.A., Kovnir S.V., Vorobiev I.I., Gabibov A.G., Vorobiev A.I. // Acta Naturae. 2013, V.5, №2, P.19-39
  6. Yi X.M., Wang F.L., Qin W.J., Yang X.J., Yuan J.L. // International Journal of Nanomedicine. 2014, V.9, №1, P.1347-1365
  7. Vonwil D., Christensen J., Fischer S., Ronneberger O., Shastri V. P. // Molecular Imaging and Biology. 2013, V.16, №3, P.350-361
  8. Satoa K., Watanabea R., Hanaokaa H., Haradaa T., Nakajimaa T., Kimb I., Paikc C.H., Choykea P.L., Kobayashi H. // Molecular Oncology 2014, V.8, №3, P.620-632
  9. Dobosz M., Strobel S., Stubenrauch K.G., Osl F., Scheuer W. // Journal of Biomedical Optics. 2014, V.19, №1, P.16022
  10. Ilyushin D.G., Smirnov I.V., Belogurov A.A., Dyachenko I.A., Zharmukhamedova T.Iu., Novozhilova T.I., Bychikhin E.A., Serebryakova M.V., Kharybin O.N., Murashev A.N. // PNAS. 2013, V.110, №4, P.1243-1248
  11. Ilyushin D.G., Haertley O.M., Bobik T.V., Shamborant O.G., Surina E.A., Knorre V.D., Masson P., Smirnov I.V., Gabibov A.G., Ponomarenko N.A. // Acta Naturae. 2013, V.5, №1, P.73-84
  12. Kobayashi H., Choyke P.L. // Acc Chem Res. 2011, V.44, №2, P.83-90
  13. Zhegalova N. G., He S., Zhou H., Kim D.M., Berezin M.Y. // Contrast Media & Molecular Imaging. 2014, V.9, №5, P.355-362
  14. Moin K., Sameni M., Victor B.C., Rothberg J.M., Mattingly R.R., Sloane B.F. // Methods in Enzymology. 2012, V.506, P.175-194
  15. Hama Y., Urano Y., Koyama Y., Kamiya M., Bernardo M., Paik R.S., Shin I.S., Paik C.H., Choyke P.L., Kobayashi H. // Cancer Research. 2007, V.67, №6, P.2791-2799
  16. Akers W.J., Xu B., Lee H., Sudlow G.P., Fields G.B., Achilefu S., Edwards W.B. // Bioconjugate Chem. 2012, V.23, №3, P.656-663
  17. Vinita A.M., Sano K., Yu Z., Nakajima T., Choyke P.L., Ptaszek M., Kobayashi H. // Bioconjugate Chem. 212, V.23, №8, P.1671-1679
  18. Springa B.Q., Abu-Yousifa A.O., Palanisamia A., Rizvia I., Zhenga X., Maia Z., Anbila S., Searsa R. B., Mensaha L.B., Goldschmidta R. // PNAS. 2014, V.111, №10, P.E933-E942
  19. Ponomarenko N.A., Vorobiev I.I., Alexandrova E.S., Reshetnyak A.V., Telegin G.B., Khaidukov S.V., Avalle B., Karavanov A., Morse H.C. 3rd., Thomas D. // Biochemistry. 2006, V.45, №1, P.324-330
  20. Karnovsky M.J., Roots L. // J Histochem Cytochem. 1964, V.12, P.219-221
  21. Ellman G.L., Courtney K.D., Andres V. Jr., Feather-Stone R.M. // Biochem Pharmacol. 1961, V.7, P.88-95
  22. Ponomarenko N.A., Pillet D., Paon M., Vorobiev I.I., Smirnov I.V., Adenier H., Avalle B., Kolesnikov A.V., Kozyr A.V., Thomas D. // Biochemistry. 2007, V.46, №50, P.14598-14609
  23. Voss E.W., Workman C.J., Mummert M.E. // Biotechniques. 1996, V.20, №2, P.286-291
  24. Sano K., Mitsunaga M., Nakajima T., Choyke P.L., Kobayashi H. // Breast Cancer Research. 2012, V.14, №2, P.61

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Terekhov S.S., Smirnov I.V., Shamborant O.G., Zenkova M.A., Chernolovskaya E.L., Gladkikh D.V., Murashev A.N., Dyachenko I.A., Knorre V.D., Belogurov A.A., Ponomarenko N.A., Deyev S.M., Vlasov V.V., Gabibov A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies