Влияние TNF и VEGF на свойства эндотелиальных клеток Ea.hy926 в модели многоклеточных сфероидов
- Авторы: Гапизов С.Ш.1,2, Петровская Л.Е.1, Шингарова Л.Н.1, Свирщевская Е.В.1, Долгих Д.А.1,2, Кирпичников М.П.1,2
-
Учреждения:
- Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 10, № 1 (2018)
- Страницы: 34-42
- Раздел: Экспериментальные статьи
- Дата подачи: 17.01.2020
- Дата публикации: 15.03.2018
- URL: https://actanaturae.ru/2075-8251/article/view/10353
- DOI: https://doi.org/10.32607/20758251-2018-10-1-34-42
- ID: 10353
Цитировать
Аннотация
Клетки эндотелия играют ключевую роль в развитии воспаления и неоангиогенеза при онкологических и хронических воспалительных заболеваниях. Клетки в составе 3D-культур наиболее приближены к условиям, в которых они находятся в органах и тканях человека при различных патологиях. Поэтому создание модели 3D-культур на основе эндотелиальных клеток линии Ea.hy926 является актуальной задачей клеточной биологии. Впервые показано, что культивирование клеток в статичных условиях на антиадгезивной подложке приводит к образованию сфероидов (3D-культур). Изучена экспрессия ICAM-1 и VEGFR-2, а также продукция цитокинов клетками Ea.hy926, культивируемыми в 2D- и 3D-условиях в присутствии TNF и VEGF. Методами проточной цитометрии и конфокальной микроскопии показано, что TNF как в 2D-, так и в 3D-культурах значительно усиливает экспрессию молекулы клеточной адгезии ICAM-1, но не влияет на уровень VEGFR-2. В спонтанных 3D-культурах наблюдалась повышенная продукция как провоспалительных (IL-8, IL-6, IP-10), так и противовоспалительных (IL-10, TGF-β 1-3) факторов по сравнению с 2D-условиями, что показано как методом проточной цитометрии, так и кПЦР. Под действием TNF в 3D-культурах секреция IL-10, GM-CSF и IL-6 повышается в 11, 4.7 и 1.6 раза соответственно по сравнению с 2D-культурами. Таким образом, использование 3D-культур клеток Ea.hy926 представляется перспективным для изучения эффектов противо- и провоспалительных агентов на клетки эндотелия.
Полный текст
ВВЕДЕНИЕ Рак и хронические воспалительные заболевания различных органов и тканей человека представляют серьезную медицинскую и социальную проблему. Показано, что ключевую роль в развитии и поддержании воспаления при таких заболеваниях, как ревматоидный артрит, псориаз, болезнь Крона и других, играет фактор некроза опухоли альфа (TNF) [1, 2]. Как воспалительный процесс, так и опухолевый рост сопровождаются гипоксией тканей, что приводит к образованию новых кровеносных сосудов под действием фактора роста эндотелия сосудов (VEGF), секретируемого клетками эпителия в условиях гипоксии [3, 4]. Известно, что в сосудах опухоли значительно повышен уровень экспрессии интегрина αvβ3 клетками эндотелия [5]. Показано, что TNF и VEGF стимулируют экспрессию молекул адгезии и воспаления на клетках эндотелия, в частности, ICAM- 1 и VCAM-1, рецептора 2 фактора роста эндотелия сосудов (VEGFR-2), PECAM-1, P- и E-селектинов, выход фактора Виллебранда из телец Вейбла-Паладе, а также усиливают секрецию цитокинов IL-6, IL-8, фактора хемотаксиса моноцитов 1 (MCP-1) и гранулоцитарно-макрофагального колониестимулирующего фактора (GM-CSF) [6-11]. Изменение экспрессии поверхностных белков эндотелия обеспечивает торможение лейкоцитов в участках воспаления, их адгезию и трансэндотелиальную миграцию [12]. Ответ in vitro соответствует процессам, происходящим in vivo под действием провоспалительных стимулов, что позволяет использовать культуру клеток эндотелия для моделирования процессов воспаления в целом организме. Использование терапевтических средств, направленных на подавление роста сосудов, частично тормозит патологический процесс. В частности, разработаны и применяются в клинике антитела к VEGF (Бевацизумаб) и низкомолекулярный ингибитор VEGF (Афлиберцепт), антитела к TNF (Адалимумаб, Инфликсимаб и Этанерцепт), ряд антител к интегринам, таких, как Ведолизумаб и антитела к α4β7 интегрину [13-15]. На стадии клинических испытаний находятся ингибитор αvβ3-интегрина Циденгитид, антитела Этарацизумаб и другие препараты [16-18]. Недостатком низкомолекулярных препаратов является достаточно быстро формирующаяся у больного резистентность к ним [19]. Антитела также обладают рядом недостатков, в частности, высокая стоимость производства рекомбинантных гуманизированных антител ограничивает число больных, которым доступен такой вид терапии. С другой стороны, антитела имеют большую молекулярную массу, препятствующую глубокому проникновению в ткани [19, 20]. Разработка аналогов антител и создание иммуноконъюгатов с противоопухолевыми препаратами и/или ингибиторами роста сосудов на их основе позволят усовершенствовать терапию онкологических и хронических воспалительных заболеваний, а так же расширить круг больных, получающих адекватную терапию [19]. Для первичного скрининга новых препаратов требуется клеточная модель in vitro, свойства которой максимально приближены к условиям in vivo. В настоящее время взаимодействие противовоспалительных препаратов с эндотелиальными клетками анализируют с использовани ем первичных культур, полученных из пуповинной вены здоровых доноров (HUVEC, human umbilical vien endothelial cells) или гибридную линию Ea.hy926 [21-23]. Предпочтительным является использование стабильной линии, так как функциональные характеристики HUVEC могут зависеть от качества вы деления клеток и от донора; кроме того, донорские клетки не всегда доступны, а количество пассажей первичных клеток ограничено [24]. Функциональные характеристики HUVEC и Ea.hy926 во многом совпадают, в частности, оба типа клеток отвечают изменением экспрессии молекул адгезии и продукцией IL-6 и IL-8 под действием TNF [25-27]. В организме мелкие сосуды и капилляры состоят преимущественно из эндотелиоцитов; в более крупных сосудах стенка формируется эндотелиальными клетками, соединительной тканью и гладкими мышцами. Монокультура эндотелиальных клеток во многом моделирует структуру капилляров, при этом использование многоклеточных сфероидов эндотелиальных клеток позволяет изучить эффекты различных препаратов не только на эндотелиальные клетки, но и на их ассоциаты с соединительным матриксом, формируемым в 3D-культурах [28-31]. Ранее пред принимались попытки получения 3D-культур эндотелиальных клеток методом клиностатирования [32-35]. Этот метод основан на вращении культуры клеток в гравитационном поле, что приводит к формированию сфероидов на поверхности монослойной культуры. Целью данной работы была разработка статичной модели 3D-культур эндотелиальных клеток линии Ea.hy926 и сравнительное изучение ответа на TNF и VEGF в 2D- и 3D-культурах. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ В работе использовали реактивы фирм Bio-Rad (США), Sigma (США), Merck (США), Panreac (Испания), «ПанЭко» (Россия). Растворы готовили на деионизованной воде MilliQ. Использовали ре комбинантные белки TNF (получен в лаборатории инженерии белка ИБХ РАН) и VEGFA165 (Protein Synthesis, Россия). Клеточные культуры В работе использовали клеточную линию чело века Ea.hy926 эндотелиального происхождения (ATCC, CRL-2922), предоставленную А.А. Соколовской (НИИ общей патологии и патофизиологии РАМН) с разрешения Dr. С.-J. Edgell (University of North Carolina). Клетки инкубировали в среде DMEM/F12 («ПанЭко», Россия) с добавлением 10% инактивированной бычьей фетальной сыворотки (HyClon, США), 50 мгк/мл сульфата гентамицина и 2 мМ L-глутамина («ПанЭко»). Для формирования трехмерных культур поверхность лунок 24-луночного планшета (Costar) покрывали поли-2-гидроксиэтилметакрилатом (pHEMA) (Sigma). В каждую лунку высевали по 500 × 103 клеток в 1 мл ростовой среды. Клетки культивировали в стандартных условиях в СО2-инкубаторе в течение 48 ч до формирования конфлюэнтного монослоя (2D-культуры) или сфероидов (3D-культуры). Конфокальная микроскопия Для анализа экспрессии молекул поверхностной адгезии на 2D-культурах эндотелиальных клеток в шестилуночные планшеты вкладывали стерильные покровные стекла, на которые наносили 100 × 103 клеток в 200 мкл среды и инкубировали в течение 16 ч в СО2-инкубаторе в стандартных условиях для получения конфлюэнтного монослоя. Для анализа 3D-культур клеток Ea.hy926 сфероиды пипетировали и переносили в лунки 96-луночного планшета. Рекомбинантные белки TNF или VEGFA добавляли в культуру в концентрации 25 нг/мл и инкубировали в течение 5 ч. Клетки окрашивали с использованием моноклональных антител мыши к ICAM-1 человека (CD56) и VEGFR-2 (Flk-1), а так же вторичные антитела к IgG мыши, меченные CFL488 (Santa Cruz Biotechnology, США) или Alexa Fluor 555 (Invitrogen, США). Антитела добавляли в концентрации 0.2 мкг/мл на 1 ч. Клетки инкубировали в СО2-инкубаторе при вращении 40 об/мин. Ядра клеток окрашивали Hoechst 33342 (Sigma). По окончании инкубации 2D- и 3D-культуры фиксировали 1% параформальдегидом в течение 10 мин при комнатной температуре и промывали фосфат но-солевым буфером (ФСБ). После фиксации клетки отмывали от первичных антител и инкубировали с вторичными антителами в ФСБ (разведение 1 : 1000) в течение 40 мин при 37°С. После отмывки клетки полимеризовали при помощи среды Mowiol 4.88 (Calbiochem, Германия) на предметных стеклах и оставляли на ночь при комнатной температуре. Изображения получали и анализировали с помощью конфокального микроскопа Nikon Еclipse TE2000-E (Япония). Проточная цитофлуориметрия Экспрессию поверхностных молекул ICAM-1 и VEGFR-2 во всех образцах оценивали с помо щью проточного цитофлуориметра FACScan (BD, США). Для получения суспензии клетки из 2D и 3D-культур обрабатывали раствором трипсин/EDТА («ПанЭко»), отмывали в ФCБ с 1% бычьим сывороточным альбумином и 0.05% NaN3 (ФСБА), добавляли антитела соответствующей специфичности и инкубировали в течение 60 мин при 4оС в темно те. После отмывки клетки окрашивали вторичными флуоресцентно меченными антителами (60 мин, 4оС в темноте). Перед анализом в образцы добавляли пропидий йодид (0.5 мкг/мл) для дифференциального окрашивания мертвых клеток. В каждой пробе анализировали 10000 клеток. Результаты обрабатывали в программе WinMDI 2.9. Продукция гуморальных факторов Продукцию цитокинов и хемокинов клетками Ea.hy926, культивируемыми в 2D- и 3D-условиях, анализировали с помощью проточной цитофлуориметрии с использованием микрочастиц по протоколу производителя (BioRad, США) на приборе FACS Calibur (BD, США). Количественная ПЦР (кПЦР) Суммарную мРНК выделяли с использованием на бора RNeasy Mini Kit (Qiagen, США) и очищали от примеси ДНК обработкой ДНКазой I (Fermentas, США). Синтез кДНК проводили с использованием набора First Strand cDNA Synthesis (Thermo Scientific, США). Концентрацию мРНК и кДНК определяли с помощью прибора NanoDrop 2000 (Thermo Scientific). Полученную кДНК использовали в качестве матрицы для ПЦР в реальном времени (кПЦР) со специфическими праймерами (табл. 1) [36] и смесью qPCRmix-HS SYBR («Евроген», Россия) на приборе Lightcycler 480 (Roche, США). Реакционная смесь включала 50 нг кДНК, праймеры (0.120 мкМ на образец), смесь qPCRmix-HS SYBR (5x) и воду MilliQ. Температуру отжига подбирали в соответствии с температурой плавления праймеров. Обработку результатов осуществляли последовательно в программах Convert Light-Cycler 480 и LineRegPCR. Экспрессию каждого гена анализировали в трех повторностях. Статистика Полученные данные анализировали параметрическими методами с помощью программы Excel; для цитометрических данных использовали программу Cell Quest. Различия считали статистически значимыми при р < 0.05. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ Экспрессия молекул адгезии клетками Ea.hy926 в 2D- и 3D-культурах В норме клетки эндотелия, выстилающие сосуды, со единены между собой молекулами адгезии ICAM-1, VCAM-1, PECAM-1 и рядом других, связанных с молекулами актина, что обеспечивает быструю перестройку цитоскелета, необходимую для экстравазации лейкоцитов в ткани при воспалении [6]. В отличие от эндотелиальных клеток, эпителиальные клетки соединены более плотными кадгериновыми контактами, которые связаны с кератиновыми филаментами цитоскелета. Эпителиальные клетки формируют 3D-культуры разной степени плотности, что зависит от количества кадгериновых контактов [37]. Ранее не было попыток получить 3D-культуры эндотелиальных клеток, аналогичных культурам эпителиальных клеток. Клиностатированные куль туры, в ряде статей называемые 3D-культурами, представляют собой монослойные культуры, выращиваемые при вращении в гравитационном поле [32-35]. При культивировании в течение 5-6 дней на поверхности монослоя появляются сфероиды, которые используют для анализа [33]. Однако при та ком длительном культивировании нельзя оценить эффекты быстродействующих факторов, например TNF. В данной работе клетки Ea.hy926 культивировали на антиадгезивной подложке pHEMA, в результате чего в течение 18 ч формировались кластеры клеток размером 200-400 мкм, неразбиваемые при пипетировании (рис. 1Б), что подтверждает формирование межклеточных контактов по всей поверхности клетки. В 2D-культуре клетки формируют плотный монослой, в котором клетки образуют контакты толь ко по периметру (рис. 1А). Конфокальный анализ 3D-культур выявил различный уровень экспрессии молекул адгезии в зависимости от расположения клеток в культуре. Так, в 3D-культурах Ea.hy926 уровень экспрессии ICAM-1 выше в клетках поверхностного слоя (рис. 1В), в то время как VEGFR-2 равномерно экспрессируется всеми клетками сфероида (рис. 1Г). Снижение экспрессии молекул адгезии внутри сфероида связано с формированием иерархии клеток. Наличие адгезионных контактов по всей поверхности клетки снижает экспрессию молекул адгезии - клетка находится в равновесном состоянии. На поверхности сфероида клетки имеют контакт с нижним слоем и не имеют контактов на поверхности, что стимулирует экспрессию молекул адгезии и имитирует репарацию повреждения в эпителиальных тканях. VEGFR-2, в отличие от ICAM-1, экспрессируется равномерно по всему объему сфероида. Таким образом, показано, что эндотелиальные клетки, подобно эпителиальным, способны формировать сфероиды с внутренней иерархией в статичных культурах. Ранее в экспериментах с клиностатированными культурами Ea.hy926 выявили различия в экспрессии молекул адгезии, а также в спонтанной и TNF индуцированной продукции цитокинов, причем обнаружено как подавление [38], так и стимуляция продукции ряда белков [39]. Экспрессию молекул адгезии в статичных 2D- и 3D-культурах Ea.hy926 в ответ на активацию TNF и VEGF анализировали, используя предварительно подобранные условия активации клеток. Методом проточной цитометрии анализировали экспрессию ICAM-1, VEGFR-2, интегрина αvβ3 и VCAM-1 в 2D-культуре под действием TNF и VEGF как в ранних культурах (24 ч инкубации), так и в «старых» (72-96 ч инкубации). Кроме того, изучали динамику изменения экспрессии поверхностных молекул под действием факторов. Изменения экспрессии интегрина αvβ3 и VCAM-1 не наблюдали (данные не приведены). VEGF также не оказывал стимулирующего действия ни на одну из молекул адгезии. Соответственно в дальнейшем изучали эффект TNF. Установлено, что наиболее эффективно TNF действует на ранние культуры (18-24 ч), причем быстро и с максимумом через 2-10 ч после добавления TNF с последующим снижением до значений в контроле через 24-36 ч. Показано, что через 5 ч после добавления TNF экспрессия ICAM-1 на ранних культурах увеличивается в 13 раз, а экспрессия VEGFR-2 практически не меняется (рис. 2, табл. 2). На рис. 2 приведены полученные методом конфокальной микроскопии микро фотографии 2D-культур, окрашенных антителами к ICAM-1 и VEGFR-2 (рис. 2В,Е), показывающие характерную мембранную локализацию этих молекул. Сравнительные данные по экспрессии ICAM-1 и VEGFR-2 под действием TNF и VEGF для 2D и 3D-культур Ea.hy926 приведены на рис. 3. Показано, что в 3D-культурах формируется более гомогенный пул клеток. Так, в 2D-культурах 10-20% клеток не экспрессируют молекул адгезии (пик в зоне аутофлуоресценции), а в 3D-культурах это значение значительно меньше (0-5%). В отличие от ICAM-1 спонтанная экспрессия VEGFR-2 в 3D-культурах снижается в 2 раза, несмотря на отсутствие первого пика (табл. 2, рис. 3Г). Во всех 3D-культурах экспрессия VEGFR-2 была статистически значимо ниже, чем в 2D-условиях культивирования, что показывает роль контактных взаимодействий в экспрессии VEGFR-2 клетками Ea.hy926. Экспрессия ICAM-1 как в 3D-, так и в 2D-культурах усиливалась под действием TNF, но повышение было менее выраженным, чем в 2D-культурах (в 7 и 11 раз соответственно). При этом появлялась негативная популяция, как и во всех 2D-культурах (рис. 3Б). VEGF не влиял на экспрессию молекул адгезии в 3D-культурах. В целом влияние различных факторов на уровень экспрессии молекул адгезии в 3D-культурах было незначительным по сравнению с влиянием на 2D-культуры. Продукция цитокинов клетками Ea.hy926 в 2D и 3D-культурах Один из показателей активации эндотелиальных клеток - продукция ими гуморальных факторов: цитокинов, хемокинов, ростовых факторов. Поскольку изменения уровня экспрессии молекул адгезии под действием VEGF не было обнаружено, продукцию цитокинов в 2D- и 3D-культурах анализировали только в присутствии TNF. Определяли продукцию 11 факторов, включая IL-2, -4, -6, -8, -10, GM-CSF, IFN-γ, трансформирующие факторы роста бета (TGF-β) 1-3 и хемокин IP-10. Обнаружено, что в отсутствие TNF клетки Ea.hy926 продуцировали существенное количество только IL-8 (13.4 нг/мл) и TGF-β1 (7.5 нг/мл), причем продукция в 3D-культурах была значимо выше (в 2-3 раза) (рис. 4А,Б). Под действием TNF продукция IL-8 в 2D-культурах (19 нг/мл) возрастала до спонтанного уровня в 3D-культурах (22 нг/мл) и не изменялась в самих 3D-культурах (рис. 4В,Г). Обработка TNF приводила к продукции цитокинов, сравнимой в 2D и 3D-культурах, которая убывала в ряду IL-6 > IL-10 > IL-2 > IFN-γ > IL-4 (рис. 4В,Г). Отношение спонтанной и индуцированной TNF продукции 3D/2D приведено на рис. 4Д,Е. Спонтанные 3D-культуры продуцировали статистически значимо больше (в 2-5 раз) IL-8, IL-6, IL-10, TGF-β 1-3, IP-10, при этом в них практически отсутствовали (ниже порога чувствительности метода в 2D-культурах) IL-2, IL-4, IFN-γ, GM-CSF (рис. 4Д). В TNF-стимулированных культурах основное различие заключалось в про дукции GM-CSF и IL-10 (рис. 4Е). Секреция IL-10 3D-культурами увеличилась в 11 раз, GM-CSF в 4.7 раза, IL-6 в 1.6 раза по сравнению с 2D-культурами. В то же время в 3D-культурах уменьшилась секреция IL-4 в 2 раза, IFN-γ в 1.4 раза, TGF-β2 и TGF-β3 в 1.6 раза по сравнению с 2D-культурами (рис. 4Е). Сравнение синтеза мРНК и белков клетками Ea.hy926 в 2D- и 3D-культурах Анализ ранних событий в культурах Ea.hy926 по сле активации TNF оценивали по экспрессии генов ICAM-1, VEGFR-2, GM-CSF и IL-6 с помощью кПЦР. Данные по кПЦР нормированы по экспрессии мРНК актина и приведены в виде значений относительной экспрессии генов (ОЭГ), которая подсчитана по формуле ОЭГ = 2-ddCt [40]. Использование этого метода позволяет оценить, во сколько раз измени лось количество копий гена в 2D- и 3D-культурах, активированных TNF, по сравнению с контролем (рис. 5А). Можно также сравнить экспрессию гена в 3D- и 2D-условиях в присутствии TNF и без него (рис. 5В). На рис. 5 приведены результаты сравне ния экспрессии VEGFR-2 и ICAM-1 в культурах клеток Ea.hy926 без стимуляции и после стимуляции TNF в течение 5 ч методами кПЦР (рис. 5А,В) и проточной цитометрии (рис. 5Б,Г). Под действием TNF значительно повышался синтез мРНК ICAM-1 как в 2D-, так и в 3D-культурах (рис. 5А), что коррелировало с данными проточной цитометрии (рис. 5Б). Эффект TNF был ниже в 3D-культурах. Что касается экспрессии VEGFR-2, то по данным кПЦР она усиливалась, незначительно, но достоверно (рис. 5В), при этом уровень белка, оцененный цитометрическим методом, не менялся. Различие данных может быть связано с неоптимальными условиями проведения кПЦР (различная длина праймеров, табл. 1). В любом случае влияние TNF на экспрессию гена ICAM-1 было существенно большим, чем на VEGFR-2. Аналогичным образом анализировали экспрессию генов GM-CSF и IL-6. РНК выделяли через 5 ч по сле добавления TNF. Для анализа синтеза белков использовали параллельные культуры, надосадок собирали через 30 ч после активации ТNF. На рис. 6 приведены результаты определения уровня спонтанного и TNF-индуцированного синтеза мРНК и продукции белков GM-CSF и IL-6. Под действием TNF усиливался как синтез мРНК, так и продукция обоих белков. Стимуляция GM-CSF была более выражена в 3D-, а IL-6 - в 2D-культурах (рис. 6А,Б). Сравнение эффективности синтеза мРНК и белков в 2D- и 3D-культурах не выявило различий в уровне экспрессии генов (рис. 6В). Спонтанная продукция GM-CSF была одинаковой в 2D- и 3D-условиях, тогда как в 3D-культурах продукция IL-6 была значительно выше. При стимуляции TNF различия снижались, и в 3D-культурах наблюдалась большая продукция как GM-CSF, так и IL-6 (рис. 6Г). ЗАКЛЮЧЕНИЕ Нами впервые показано, что культивирование клеток эндотелиального типа Ea.hy926 возможно в статичных условиях на антиадгезивной подложке. В спонтанных культурах Ea.hy926 в 3D-условиях продукция как провоспалительных, так и противовоспалительных факторов повышена по сравнению с 2D-условиями, что позволяет проводить более детальный анализ при тестировании новых терапевтических агентов. Активация TNF сходным образом влияет на клетки Ea.hy926, культивируемые в 2D или 3D-условиях, за исключением усиления в 4-5 раз продукции GM-CSF и IL-10 в 3D-культурах. Наиболее характерными маркерами клеток Ea.hy926 являются молекула адгезии ICAM-1 и растворимые факторы IL-6, IL-8, TGF-β1, IL-10. 3D-культуры удобны для манипуляций, их можно переносить в но вые планшеты, например 96-луночные, что позволяет изучать панель препаратов в разных разведениях. Для анализа методом конфокальной микроскопии не требуется выращивания клеток на предметных стеклах. Все это делает 3D-культуру клеток Ea.hy926 удобной для скрининга новых противовоспалительных и ангиостатических препаратов.
Об авторах
С. Ш. Гапизов
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: gsultan3@gmail.com
Россия
Л. Е. Петровская
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: gsultan3@gmail.com
Россия
Л. Н. Шингарова
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: gsultan3@gmail.com
Россия
Е. В. Свирщевская
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: gsultan3@gmail.com
Россия
Д. А. Долгих
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Московский государственный университет им. М.В. Ломоносова
Email: gsultan3@gmail.com
Россия
М. П. Кирпичников
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Московский государственный университет им. М.В. Ломоносова
Email: gsultan3@gmail.com
Россия
Список литературы
- Astrakhantseva I.V., Efimov G.A., Drutskaya M.S., Kruglov A.A., Nedospasov S.A. // Biochemistry. 2014, V.79, №12, P.1308-1321
- Petrovskaya L.E., Shingarova L.N., Kryukova E.A., Boldyreva E.F., Yakimov S.A., Guryanova S.V., Novoseletsky V.N., Dolgikh D.A., Kirpichnikov M.P. // Biochemistry. 2012, V.77, №1, P.79-89
- Arjamaa O., Aaltonen V., Piippo N., Csont T., Petrovski G., Kaarniranta K., Kauppinen A. // Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, doi: 10.1007/s00417-017-3711-0
- Song H., Kim Y., Cho H., Kim S., Kang M., Kim J., Min H., Kang J., Yoon J., Kim C. // Am. J. Respir. Cell Mol. Biol. 2017, doi: 10.1165/rcmb.2016-0080OC
- Bauer K., Mierke C., Behrens J. // Int. J. Cancer. 2007, V.121, №9, P.1910-1918
- Pober J.S., Sessa W.C. // Nat. Rev. Immunol. 2007, V.7, P.803-815
- Bouis D., Hospers G.A., Meijer C., Molema G., Mulder N.H. // Angiogenesis. 2001, V.4, №2, P.91-102
- Cervenak L., Morbidelli L., Donati D., Donnini S., Kambayashi T., Wilson J.L., Axelson H., Castaños-Velez E., Ljunggren H.G., Malefyt R.D. // Blood. 2000, V.96, №7, P.2568-2573
- Meager A. // Cytokine Growth Factor Rev. 1999, V.10, №1, P.27-39
- Galley H.F., Blaylock M.G., Dubbels A.M., Webster N.R. // Cell Biol. Internat. 2000, V.24, №2, P.91-99
- Melder R.J., Koenig G.C., Witwer B.P., Safabakhsh N., Munn L.L., Jain R.K. // Nat. Med. 1996, V.2, №9, P.992-997
- Madri J.A., Graesser D., Haas T. // Biochem. Cell Biol. 1996, V.74, №6, P.749-757
- Moens S., Goveia J., Stapor P., Cantelmo A., Carmeliet P. // Cytokine Growth Factor Rev. 2014, V.25, №4, P.473-482
- Komaki Y., Yamada A., Komaki F., Kudaravalli P., Micic D., Ido A., Sakuraba A. // J. Autoimmunity. 2017, V.79, P.4-16
- Bergqvist V., Hertervig E., Gedeon P., Kopljar M., Griph H., Kinhult S., Carneiro A., Marsal J. // Cancer Immunol. Immunotherapy. 2017, V.66, №5, P.581-592
- Manegold C., Vansteenkiste J., Cardenal F., Schuette W., Woll P., Ulsperger E., Kerber A., Eckmayr J., von Pawel J. // Invest. New Drugs. 2013, V.31, №1, P.175-182
- Hersey P., Sosman J., O’Day S., Richards J., Bedikian A., Gonzalez R., Sharfman W., Weber R., Logan T., Buzoianu M. // Cancer. 2010, V.116, №6, P.1526-1534
- Liu Y., Goswami R., Liu C., Sinha S. // Mol. Pharm. 2015, V.12, №7, P.2544-2550
- Deyev S., Lebedenko E., Petrovskaya L., Dolgikh D., Gabibov A., Kirpichnikov M. // Russ. Chem. Rev. 2015, V.84, №1, P.1-26
- Gebauer M., Skerra A. // Curr. Opin. Chem. Biol. 2009, V.13, №3, P.245-255
- Oost B.A., Edgell C.J.S., Hay C.W., MacGillivray R.T.-A. // Biochem. Cell. Biol. 1986, V.64, №7, P.699-705
- Edgell C.J., McDonald C.C., Graham J.B. // Cell Biology. 1983, V.80, №12, P.3734-3737
- Bauer J., Marcolis M., Schreiner C., Edgell C.J., Azizkhan J., Lazarowski E., Juliano R.L. // J. Cell. Physiol. 1992, V.153, №3, P.437-449
- Heiss M., Hellstrom M., Kalen M., May T., Weber H., Hecker M., Augustin H., Korff T. // FASEB J. 2015, V.29, №7, P.3076-3084
- Scheglovitova O.N., Sklyankina N.N., Boldyreva N.V., Babayants A.A., Frolova I.S., Kapkaeva M.R. // Vestnik of the RAMS. 2014, V.3, №4, P.31-35
- Riesbeck K., Billström A., Tordsson J., Brodin T., Kristensson K., Dohlsten M. // Clin. Diagn. Lab. Immunol. 1998, V.5, №5, P.675-682
- Chao C., Lii C., Tsai I., Li C., Liu K., Tsai C., Chen H. // J. Agric. Food Chem. 2011, V.59, P.5263-5271
- Hirschhaeuser F., Menne H., Dittfeld C., West J., Mueller-Klieser W., Kunz-Schughart L. // J. Biotechnol. 2010, V.148, P.3-15
- Fennema E., Rivron N., Rouwkema J., Blitterswijk C., Boer J. // Trends Biotechnol. 2013, V.31, №2, P.108-115
- Page H., Flood P., Reynaud E.G. // Cell Tissue Res. 2013, V.352, P.123-131
- Breslin S., O’Driscoll L. // Drug Discovery Today. 2013, V.18, №5-6, P.240-249
- Ma X., Sickmann A., Pietsch J., Wildgruber R., Weber G., Infanger M., Bauer J., Grimm D. // Proteomics. 2014, V.14, №6, P.689-698
- Ma X., Wehland M., Schulz H., Saar K., Hübner N., Infanger M., Bauer J., Grimm D. // PLoS One. 2013, V.8, №5, P.1-10
- Sokolovskaya A.A., Ignashkova T.I., Bochenkova A.V., Moskovtsev A.A., Baranov V.M., Kubatiev A.A. // Acta Astronautica. 2014, V.99, P.16-23
- Grimm D., Bauer J., Ulbrich C., Westphal K., Wehland M., Infanger M., Aleshcheva G., Pietsch J., Ghardi M., Beck M. // Tissue Engineering: Part A. 2010, V.16, №5, P.1559-1573
- Unger R.E., Krump-Konvalinkova V., Peters K., Kirkpatrick C.J. // Microvascular Res. 2002, V.64, P.384-397
- Kim J.B. // Semin. Cancer Biol. 2005, V.15, №5, P.365-377
- Griffoni C., Di Molfetta S., Fantozzi L., Zanetti C., Pippia P., Tomasi V., Spisni E. // J. Cell Biochem. 2011, V.112, №1, P.265-272
- Sanchez-Bustamante C., Kelm J.M., Mitta B., Fussenegger M. // Biotechnology and Bioengineering 2006, V.93, №1, P.169-180
- Livak K.J., Schmittgen T.D. // Methods. 2001, V.25, №4, P.402-408