Роль адаптерного белка MIM в актинзависимой регуляции эпителиальных натриевых каналов (ENaC)

Обложка

Цитировать

Полный текст

Аннотация

Эпителиальные натриевые каналы (ENaC) располагаются на апикальной мембране клеток различных эпителиев, в частности, в собирательных трубочках почки, где обеспечивают тонкую регуляцию реабсорбции ионов натрия. Динамические перестройки актинового цитоскелета являются одним из основных механизмов регуляции активности ENaC. В этот процесс вовлечены актинсвязывающие белки кортактин и комплекс Arp2/3, которые уменьшают вероятность открытого состояния канала; однако до сих пор неизвестны конкретные звенья регуляции активности ENaC. Мы предположили, что одним из компонентов регуляции может быть адаптерный белок MIM (missing-in-metastasis), обладающий доменами связывания с PIP2 -богатыми участками плазматической мембраны, микрофиламентами, GTP-азами Rac (домен IMD), а также кортактином (домен PRD) и G-актином (домен WH2). Вовлечение белка MIM в актин-зависимую регуляцию ENaC изучали с использованием метода локальной фиксации потенциала (patchclamp) в конфигурации whole-cell на модели временной трансфекции клеток линии CHO. Котрансфекция субъединиц ENaC с белком MIM или его мутантными формами привела к уменьшению плотности ENaC опосредованного тока. Временная трансфекция клеток разными формами белка MIM выявила важную роль доменов PRD и WH2 в индукции перестроек актинового цитоскелета. Результаты электрофизиологических исследований и окрашивание актинового цитоскелета дают основание предполагать, что белок MIM, вероятно, входит в состав мультибелкового комплекса, отвечающего за актин-зависимую регуляцию активности ENaC.

Полный текст

ВВЕДЕНИЕ В эпителиальных клетках микрофиламенты (МФ, фибриллярный актин, или F-актин) вовлечены в регуляцию клеточных контактов, образование ламеллоподий и филоподий, модуляцию активности ионных каналов и другие процессы [1, 2]. Актиновый цитоскелет прямо или опосредованно (при участии актинсвязывающие белков) связан с итоплазматическими участками ионных каналов и регулирует их воротные свойства, встраивание, интернализацию и др. [3-11]. Показано прямое взаимодействие актинового цитоскелета с эпителиальными натриевыми каналами (ENaC) [11-14], водными каналами аквапорин 2 (AQP2) [15-17], каналами «муковисцидоза» (CFTR) [18-20] и др. Реорганизация актинового цитоскелета влияет на активность ионных каналов [7, 21-24]. Действие цитохалазина Д приводит к увеличению вероятности открытого состояния (Po ) ENaC [10]. Предполагается, что именно короткие микрофиламенты, а не глобулярный G-актин или длинные фибриллы F-актина, регулируют активность различных ионных каналов [5, 10, 25, 26]. Ионные каналы ENaC, относящиеся к суперсемейству DEG/ENaC (дегенерины/эпителиальные натриевые каналы), экспрессируются в различных органах и тканях человека и животных (эпителии почки, легких, кишечника и др.) и обеспечивают направленный перенос ионов натрия от апикальной мембраны к базолатеральной. Отличительной чертой каналов суперсемейства DEG/ENaC является блокирование диуретиком амилоридом в наномолярной концентрации [27]. Согласно современным представлениям, функциональный канал ENaC образован тремя субъединицами - α, β, γ в соотношении 1 : 1 : 1 [28, 29]. В почке ENaC экспрессируется в эпителиальных клетках собирательных трубочек и опосредует регулируемую реабсорбцию ионов натрия, играя важную роль в поддержании водно-солевого гомеостаза и в регуляции давления крови [30, 31]. Обнаружена колокализация ENaC с актиновыми филаментами [14, 32] и актинсвязывающими белками (анкирин, спектрин и др. [33]). Показано взаимодействие канала с SH3-доменом α-спектрина за счет богатого пролином участка на С-конце α-субъединицы ENaC [25, 33, 34]. Существующая модель регуляции ENaC постоянно дополняется новыми данными - недавно было выявлено, что в доставке ENaC на апикальную мембрану клеток в собирательных трубочках почки участвует цитоскелетсвязывающий белок анкирин G [35]. Нами предложена модель, согласно которой кортактин (через комплекс Arp2/3) является связующим звеном между каналом и цитоскелетом клеток собирательных трубочек почки мыши [36]. Взаимодействие ENaC с цитоскелетом через адаптерные белки играет важную функциональную роль в регуляции реабсорбции натрия в дистальном отделе нефрона. В 2002 году был открыт адаптерный белок MIM (missing-in-metastasis, отсутствующий при метастазировании), продукт гена mtss1 (metastasis suppressor 1, супрессор метастазирования). Этот актинсвязывающий белок, как изначально предполагалось [37], значим при метастазировании некоторых видов злокачественных новообразований. MIM обнаружен как транскрипт, отсутствующий в клеточной линии метастатического рака молочной железы (клеточная линия SKBR3) и клеточных линиях метастатической аденокарциномы предстательной железы (LNCaP и PC3) [37-39]. Предполагалось, что MIM может функционировать как супрессор метастазирования [37], однако однозначного мнения на этот счет не сложилось [40, 41]. Обнаружено, что повышение экспрессии MIM коррелирует с некоторыми видами злокачественной трансформации, например при меланоме и плоскоклеточном раке головы и шеи [42, 43]. Повышение экспрессии MIM коррелирует с прогрессированием гепатокарциномы [44]. MIM включает в себя несколько важных доменов, которые, по всей видимости, играют ключевую роль во взаимодействии с другими белками (см. рис. 1). Так, N-концевой домен IMD (IRSp53-MIM homology domain) связывает актиновые филаменты, обогащенные PIP2 -участки мембраны, малые GTP-азы Rac и участвует в димеризации белка. Домен SRD (serine rich domain) содержит сайты фосфорилирования по тирозину; домен PRD (proline rich domain) связывается с кортактином и тирозинфосфатазой дельта; С-концевой домен WH2 (WASP homology domain 2) связывает G-актин. Предположительно, MIM вовлечен в регуляцию актинового цитоскелета посредством двух независимых актинсвязывающих доменов: IMD и WH2 [37, 39]. Показана колокализация MIM с кортактином, и вероятное их взаимодействие с помощью пролин-богатого домена белка (PRD) MIM [45]. MIM участвует в перестройках цитоскелета [38, 45, 46] - повышенная экспрессия MIM сопровождается формированием актин-богатых протрузий, наподобие раффлов и микрошипиков [47]. В клетках эпителия почки мыши MIM колокализуется с комплексом Arp2/3, где он может опосредовать сборку актиновых филаментов [48, 49]. Функционально активный белок собирается, по-видимому, в гомодимеры, и важную роль в этом процессе играет домен IMD [50]. MIM экспрессируется в почке эмбрионов мыши в области ветвящихся собирательных трубочек, тубул и гломерул [51]. Значительная экспрессия MIM обнаружена в кортикальном слое почек новорожденных мышей, слабая - в мозговой области. Мыши с нарушением гена mtss1 (MIM-/-) рождались здоровыми, но к 5 месяцу жизни почки примерно половины животных содержали большие и многочисленные кисты, проявляя признаки аутосомно-доминантной поликистозной болезни почек [51]. MIM модулирует взаимодействие между цитоскелетом и плазматической мембраной, способствуя поддержанию клеточных контактов в эпителии почки [52]. Учитывая важную роль белка MIM в функционировании клеток эпителия почки, возникает вопрос об участии данного белка в регуляции активности ENaC. Задачей нашей работы было изучение вовлечения белка MIM в актин-зависимую регуляцию ENaC и расширение модели регуляции ENaC актинсвязывающими белками. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ Клеточные линии В работе использована клеточная линия CHO (Chinese Hamster Ovary cells) - иммортализованная клеточная линия, полученная на основе эпителиальных клеток яичников китайского хомяка (CHO-K1, Американская коллекция клеточных культур). Клетки культивировали в чашках Петри в среде DMEM, содержащей 10% сыворотки крови плодов коровы и 80 мкг/мл гентамицина. Временная трансфекция В работе использованы плазмиды, кодирующие: α-, β-, γ-субъединицы mENaC [36, 53] и различные формы белка MIM мыши (предоставлены доктором Lappalainen и доктором Zhao [45, 49, 54]). MIM full - полноценный белок; MIM PH - химерный белок, в котором инактивированный домен IMD конъюгирован с доменом PH (pleckstrin homology - домен, гомологичный плекстрину) фосфолипазы C дельта 1 (PLCD1), с нарушением способности димеризоваться; MIM ∆PRD - белок с делецией домена PRD (∆617-727), не взаимодействует с кортактином; MIM ∆WH2 - белок с делецией домена WH2 (∆746-759), не полимеризующий G-актин; MIM/IMD-L - плазмида кодирует только длинный вариант сплайсинга отдельного домена IMD, который не способен взаимодействовать с GTP-азами Rac (остальная часть белка отсутствует). Все MIM-плазмиды кодируют белок мыши, они основаны на векторе pEGFP-N5. Вся информация по созданию плазмид приведена в ранее опубликованных статьях [49, 54]. Перестройки актинового цитоскелета анализировали с использованием временной трансфекции клеток различными плазмидами, кодирующими белок MIM и его мутантные формы, контролем служила трансфекция GFP. Для электрофизиологических экспериментов клетки высевали на покровные стекла 4 × 4 мм так, чтобы в день трансфекции плотность монослоя составляла 50-60%. За 24 ч до экспериментов проводили временную трансфекцию α-, β-, γ-субъединицами mENaC (соотношение 1 : 1 : 1) вместе с различными формами белка MIM. Весовое соотношение плазмидной ДНК: α-mENaC - 0.33 мкг, β-mENaC - 0.33 мкг, γ-mENaC - 0.33 мкг (суммарно 1 мкг плазмид, кодирующих mENaC), GFP в контроле - 1 мкг, MIM (любой вариант имел GFP-метку) - 1 мкг. Суммарно на одну временную трансфекцию - 2 мкг плазмидной ДНК. Все эксперименты проводили на клетках линии СНО с использованием трансфицирующего реагента PolyFect (Qiagen). Маркером успешной трансфекции в контроле служила плазмида, кодирующая GFP. Визуализация актинового цитоскелета фиксированных клеток Фиксацию и окрашивание трансфицированных клеток линии CHO проводили по стандартному протоколу [36]. Клетки высевали на покровные стекла (12 × 12 мм), на следующий день промывали PBS, фиксировали в течение 10 мин при комнатной температуре 3.7% формальдегидом. Далее клетки перфорировали 0.1% Triton X-100 (5 мин, комнатная температура), инкубировали в 2-мкМ растворе родамина-фаллоидина в течение 15 мин при 37°С (Sigma-Aldrich). Ядра окрашивали красителем Hoechst-33342 (5 мкг/мл, инкубация 5 мин, комнатная температура) и закрепляли на предметном стекле при помощи среды Vectashield (Vector Laboratories). После добавления каждого реагента (предварительно растворены в PBS) следовала промывка раствором PBS. Визуализацию осуществляли с помощью конфокального микроскопа Nikon A-1R, объектив ×100, цифровое увеличение. Использовали лазеры с длинами волн возбуждения 405 нм (Hoechst-33342, максимум эмиссии 461 нм), 488 нм (GFP, максимум эмиссии 509 нм) и 561 нм (родамин-фаллоидин, максимум эмиссии 565 нм). Анализ и обработку изображений проводили в программном обеспечении ImageJ. Электрофизиология Интегральные токи регистрировали с помощью метода локальной фиксации потенциала (patch-clamp) в конфигурации whole-cell. Для определения максимального значения ENaC-опосредованного интегрального тока эксперименты проводили в условиях постоянного протока жидкости в камере (shear-stress); для определения минимального значения в конце эксперимента ENaC-опосредованный интегральный ток блокировали добавлением амилорида (10 мкМ). В работе использовали усилитель Axopatch 200B (Molecular Devices, Sunnyvale, CA, США), связанный посредством АЦП-ЦАП Digidata 1440A с компьютером с установленным программным обеспечением pClamp 10.2 (Molecular Devices). Во время проведения экспериментов использовали фильтр Бесселя 1 кГц. Записи токов получены в условиях фиксации напряжения с использованием ранее апробированного протокола [36] (схема подачи потенциала в эксперименте показана на рис. 3В): поддерживаемый потенциал +40 мВ, далее линейное уменьшение с +60 мВ до -100 мВ (рамп, продолжительность 500 мс). Активность ENaC определяли как значение плотности тока (ток, нормализованный на электрическую емкость клетки) при потенциале -80 мВ. Для анализа использовали клетки со значением электрической емкости в интервале 6÷10 пФ (электрическую емкость клетки компенсировали перед экспериментом). В качестве отрицательного контроля использовали котрансфекцию α-, β-, γ-ENaC и плазмиды, кодирующей GFP (основана на векторе pEGFP), по весовому соотношению плазмидной ДНК (1 мкг (α-, β-, γ-mENaC) и 1 мкг GFP). Внутриклеточный раствор (в мМ): 120 CsCl, 5 NaCl, 5 EGTA, 2 MgCl2 , 2 Mg-АТР, 40 HEPES/Tрис; pH 7.4. Внеклеточный раствор (в мМ): 140 LiCl, 2 MgCl2, 10 HEPES/Tрис, pH 7.4. Статистическая обработка результатов Все результаты представлены в виде среднее ± стандартная ошибка среднего. Для анализа использовали непарный тест Стьюдента, рассчитанный в программном обеспечении Microcal Origin 6.1 (Microcal Software). Различия с p < 0.05 считали статистически значимыми. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ Влияние различных мутантных форм белка MIM на структуру актинового цитоскелета Нами изучено влияние белка MIM (доменная структура представлена на рис. 1) на организацию актинового цитоскелета и активность ENaC. Действие белка MIM и его мутантов на актиновый цитоскелет анализировали на фиксированных клетках линии CHO, окрашенных родамином-фаллоидином. Структура актинового цитоскелета в клетках, трансфицированных полноценным белком MIM (рис. 2, MIM full), изменялась по сравнению с контрольной трансфекцией GFP (рис. 2, GFP) - наблюдалось утолщение пучков актиновых филаментов в примембранной области, индуцировалось образование выступов клеточной мембраны (микрошипиков). Трансфекция химерным белком (рис. 2, MIM PH) привела к схожим изменениям структуры актинового цитоскелета, в то время как трансфекция белком с делецией пролин-богатого домена (не взаимодействующего с кортактином; рис. 2, MIM ΔPRD) или белком с делецией домена WH2 (не способен полимеризовать G-актин; рис. 2, MIM ΔWH2) не вызвала подобных изменений. Трансфекция длинного варианта сплайсинга отдельного домена IMD белка MIM (не способен взаимодействовать с GTP-азами Rac; рис. 2, MIM/IMD-L) приводила к неравномерному распределению актинового цитоскелета в сравнении с трансфекцией полноценным белком. Наши результаты согласуются с данными, полученными на клеточной линии фибробластов 3T3 [38], где трансфекция MIM-GFP приводила к появлению аномальных червеобразных (worm-like) актиновых структур и уменьшению стресс-фибрилл. Сходные перестройки актинового цитоскелета наблюдали после трансфекции MIM/IMD-L (длинный вариант отдельного домена IMD) при изучении домена IMD в клетках линии U2OS [49]. Высказано предположение, что это происходит вследствие искривления плазматической мембраны. Таким образом, выявленные в нашем исследовании перестройки актинового цитоскелета связаны с доменами PRD и WH2 белка MIM. В связи с тем, что своим пролин-богатым доменом PRD MIM взаимодействует с кортактином, можно предположить, что белок MIM модулирует кортактин-зависимую и Arp2/3-опосредованную полимеризацию актина [52], важную для реализации различных клеточных функций, в том числе для образования клеточных выростов [49]. Влияние белка MIM на опосредованный ENaC интегральный ток Динамические перестройки актинового цитоскелета являются одним из механизмов регуляции активности ENaC [14, 32]. Согласно данным, полученным нами на клеточной линии эпителия почки мыши, в регуляцию ENaC вовлечены актинсвязывающие белки кортактин и комплекс Arp2/3 [36]. Экспрессия белка MIM обнаружена в отделе почки, где экспрессируется ENaC, и установлена его колокализация с кортактином и белками, образующими комплекс Arp2/3 [45, 52]. В электрофизиологических экспериментах получены следующие значения плотности интегрального ENaC-опосредованного тока (пА/пФ): в контроле - 271.2 ± 18.3, после котрансфекции с MIM full - 69.6 ± 11.9, с MIM PH - 48.9 ± 7.8, с MIM ΔPRD - 178.0 ± 19.3, с MIM ΔWH2 - 146.0 ± 19.4, с MIM/IMD-L - 82.7 ± 19.8. Суммарный график и примеры записей токов представлены на рис. 3А,Б. Как представлено на рис. 3А, ENaC-опосредованный ток был значительно ниже, когда субъединицы канала были трансфицированы совместно с MIM full. Кроме того, мы показали, что все протестированные нами мутанты значительно снижали активность канала по сравнению с контролем, в котором канал экспрессировался без белков MIM. Однако мутантные формы MIM (ΔPRD и ΔWH2) оказывали самое слабое влияние на плотность интегрального тока. Таким образом, мы можем предположить, что белок MIM (вместе с актинсвязывающими белками кортактином и комплексом Arp2/3) вовлечен в актин-опосредованную регуляцию ENaC. На основании полученных данных выдвинута гипотеза (рис. 4), согласно которой многофункциональный адаптерный белок MIM участвует в цитоскелет-опосредованной регуляции ENaC. ЗАКЛЮЧЕНИЕ Давление крови в организме прямо зависит от гомеостаза ионов натрия (Na+); контроль этого процесса осуществляют почки за счет реабсорбции Na+ и воды при помощи различных ионных каналов и транспортеров, в том числе эпителиальных натриевых каналов (ENaC), в альдостерон-чувствительном дистальном отделе нефрона. Снижение вероятности открытого состояния ENaC, как показано ранее [36], может происходить вследствие кортактин-зависимой и Arp2/3-опосредованной реорганизации актинового цитоскелета, однако точный механизм регуляции активности ENaC актиновым цитоскелетом и адаптерными белками до конца не изучен. Новым участником многокомпонентной модели регуляции ENaC, возможно, является адаптерный белок MIM. С использованием метода локальной фиксации потенциала удалось определить, что MIM участвует в цитоскелет-опосредованной регуляции активности ENaC, и показать важную роль доменов PRD и WH2. Полученные изображения актинового цитоскелета подтверждают участие белка MIM в процессах организации актинового цитоскелета. Таким образом, активность ENaC регулируется перестройками актинового цитоскелета при участии сложноорганизованного мультибелкового комплекса, который может включать в себя помимо кортактина и комплекса Arp2/3 также MIM (рис. 4). Изучение тонкой регуляции работы этого комплекса важно для понимания молекулярных механизмов, которые могут лежать в основе многих патофизиологических состояний.

×

Об авторах

Л. С. Шуйский

Институт цитологии РАН; Санкт-Петербургский политехнический университет Петра Великого

Автор, ответственный за переписку.
Email: leonid.shuyskiy@gmail.com
Россия

В. В. Левченко

Medical College of Wisconsin

Email: leonid.shuyskiy@gmail.com
США

Ю. А. Негуляев

Институт цитологии РАН; Санкт-Петербургский политехнический университет Петра Великого

Email: leonid.shuyskiy@gmail.com
Россия

А. В. Старущенко

Medical College of Wisconsin

Email: leonid.shuyskiy@gmail.com
Россия

Д. В. Илатовская

Medical College of Wisconsin; Medical University of South Carolina

Email: leonid.shuyskiy@gmail.com
США

Список литературы

  1. Janmey P.A. // Physiol Rev. 1998, V.78, №3, P.763-781
  2. Le Clainche C., Carlier M.F. // Physiol Rev. 2008, V.88, №2, P.489-513
  3. Wang Q., Zheng W., Wang Z., Yang J., Hussein S., Tang J., Chen X.Z. // PLoS One. 2015, V.10, №4, e0123018
  4. Sudarikova A.V., Tsaplina O.A., Chubinskiy-Nadezhdin V.I., Morachevskaya E.A., Negulyaev Y.A. // Biochem. Biophys. Res. Commun. 2015, V.461, №1, P.54-58
  5. Karpushev A.V., Ilatovskaya D.V., Staruschenko A. // BMC Res. Notes. 2010, V.3, P.210
  6. Alli A.A., Bao H.F., Liu B.C., Yu L., Aldrugh S., Montgomery D.S., Ma H.P., Eaton D.C. // Am. J. Physiol. Renal Physiol. 2015, V.309, №5, P.F456-463
  7. Sasaki S., Yui N., Noda Y. // Biochim. Biophys. Acta. 2014, V.1838, №2, P.514-520
  8. Rooj A.K., Liu Z., McNicholas C.M., Fuller C.M. // Am. J. Physiol. Cell Physiol. 2015, V.309, №5, P.C308-319
  9. Karpushev A.V., Levchenko V., Ilatovskaya D.V., Pavlov T.S., Staruschenko A. // Hypertension. 2011, V.57, №5, P.996-1002
  10. Karpushev A.V., Ilatovskaya D.V., Pavlov T.S., Negulyaev Y.A., Staruschenko A. // PLoS One. 2010, V.5, №1, e8827
  11. Shin S.H., Lee E.J., Hyun S., Chun J., Kim Y., Kang S.S. // Cell Signal. 2012, V.24, №3, P.641-651
  12. Jovov B., Tousson A., Ji H.L., Keeton D., Shlyonsky V., Ripoll P.J., Fuller C.M., Benos D.J. // J. Biol. Chem. 1999, V.274, №53, P.37845-37854
  13. Copeland S.J., Berdiev B.K., Ji H.L., Lockhart J., Parker S., Fuller C.M., Benos D.J. // Am. J. Physiol. Cell. Physiol. 2001, V.281, №1, P.C231-240
  14. Mazzochi C., Bubien J.K., Smith P.R., Benos D.J. // J. Biol. Chem. 2006, V.281, №10, P.6528-6538
  15. Noda Y., Horikawa S., Katayama Y., Sasaki S. // Biochem. Biophys. Res. Commun. 2004, V.322, №3, P.740-745
  16. Noda Y., Sasaki S. // Biochim. Biophys. Acta. 2006, V.1758, №8, P.1117-1125
  17. Moeller H.B., Praetorius J., Rutzler M.R., Fenton R.A. // Proc. Natl. Acad. Sci. USA. 2010, V.107, №1, P.424-429
  18. Rogan M.P., Stoltz D.A., Hornick D.B. // Chest. 2011, V.139, №6, P.1480-1490
  19. Cantiello H.F. // Exp. Physiol. 1996, V.81, №3, P.505-514
  20. Chasan B., Geisse N.A., Pedatella K., Wooster D.G., Teintze M., Carattino M.D., Goldmann W.H., Cantiello H.F. // Eur. Biophys. J. 2002, V.30, №8, P.617-624
  21. Negulyaev Y.A., Vedernikova E.A., Maximov A.V. // Mol. Biol .Cell. 1996, V.7, №12, P.1857-1864
  22. Negulyaev Y.A., Khaitlina S.Y., Hinssen H., Shumilina E.V., Vedernikova E.A. // J. Biol. Chem. 2000, V.275, №52, P.40933-40937
  23. Chubinskiy-Nadezhdin V.I., Sudarikova A.V., Nikolsky N.N., Morachevskaya E.A. // Dokl. Biochem, Biophys. 2013, V.450, P.126-129
  24. Chubinskiy-Nadezhdin V.I., Negulyaev Y.A., Morachevskaya E.A. // Biochem. Biophys. Res. Commun. 2011, V.412, №1, P.80-85
  25. Cantiello H.F., Stow J.L., Prat A.G., Ausiello D.A. // Am. J. Physiol. 1991, V.261, №5, Pt1, P.C882-888
  26. Staruschenko A., Negulyaev Y.A., Morachevskaya E.A. // Biochim. Biophys. Acta. 2005, V.1669, №1, P.53-60
  27. Kleyman T.R., Cragoe E.J. Jr. // Semin, Nephrol. 1988, V.8, №3, P.242-248
  28. Staruschenko A., Adams E., Booth R.E., Stockand J.D. // Biophys. J. 2005, V.88, №6, P.3966-3975
  29. Canessa C.M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J.D., Rossier B.C. // Nature 1994, V.367, №6462, P.463-467
  30. Garty H., Palmer L.G. // Physiol Rev. 1997, V.77, №2, P.359-396
  31. Alvarez de la Rosa D., Canessa C.M., Fyfe G.K., Zhang P. // Annu. Rev. Physiol. 2000, V.62, P.573-594
  32. Mazzochi C., Benos D.J., Smith P.R. // Am. J. Physiol. Renal. Physiol. 2006. V. 291. № 6. P. F1113-1122. 2006, V.291, №6, P.F1113-1122
  33. Rotin D., Bar-Sagi D., O’Brodovich H., Merilainen J., Lehto V.P., Canessa C.M., Rossier B.C., Downey G.P. // EMBO J. 1994, V.13, №19, P.4440-4450
  34. Smith P.R., Saccomani G., Joe E.H., Angelides K.J., Benos D.J. // Proc .Natl. Acad. Sci. USA. 1991, V.88, №16, P.6971-6975
  35. Klemens C.A., Edinger R.S., Kightlinger L., Liu X., Butterworth M.B. // J. Biol. Chem. 2017, V.292, №1, P.375-385
  36. Ilatovskaya D.V., Pavlov T.S., Levchenko V., Negulyaev Y.A., Staruschenko A. // FASEB J. 2011, V.25, №8, P.2688-2699
  37. Lee Y.G., Macoska J.A., Korenchuk S., Pienta K.J. // Neoplasia. 2002, V.4, №4, P.291-294
  38. Mattila P.K., Salminen M., Yamashiro T., Lappalainen P. // J. Biol. Chem. 2003, V.278, №10, P.8452-8459
  39. Machesky L.M., Johnston S.A. // J. Mol. Med. (Berl.). 2007, V.85, №6, P.569-576
  40. Nixdorf S., Grimm M.O., Loberg R., Marreiros A., Russell P.J., Pienta K.J., Jackson P. // Cancer Lett. 2004, V.215, №2, P.209-220
  41. Bompard G., Sharp S.J., Freiss G., Machesky L.M. // J. Cell. Sci. 2005, V.118, Pt22, P.5393-5403
  42. Dawson J.C., Bruche S., Spence H.J., Braga V.M., Machesky L.M. // PLoS One. 2012, V.7, №3, e31141
  43. Mertz K.D., Pathria G., Wagner C., Saarikangas J., Sboner A., Romanov J., Gschaider M., Lenz F., Neumann F., Schreiner W. // Nat. Commun. 2014, V.5, P.3465
  44. Ma S., Guan X.Y., Lee T.K., Chan K.W. // Hum. Pathol. 2007, V.38, №8, P.1201-1206
  45. Lin J., Liu J., Wang Y., Zhu J., Zhou K., Smith N., Zhan X. // Oncogene. 2005, V.24, №12, P.2059-2066
  46. Yamagishi A., Masuda M., Ohki T., Onishi H., Mochizuki N. // J. Biol. Chem. 2004, V.279, №15, P.14929-14936
  47. Woodings J.A., Sharp S.J., Machesky L.M. // Biochem. J. 2003, V.371, Pt2, P.463-471
  48. Lee S.H., Kerff F., Chereau D., Ferron F., Klug A., Dominguez R. // Structure. 2007, V.15, №2, P.145-155
  49. Mattila P.K., Pykalainen A., Saarikangas J., Paavilainen V.O., Vihinen H., Jokitalo E., Lappalainen P. // J. Cell. Biol. 2007, V.176, №7, P.953-964
  50. Cao M., Zhan T., Ji M., Zhan X. // Biochem. J. 2012, V.446, №3, P.469-475
  51. Xia S., Li X., Johnson T., Seidel C., Wallace D.P., Li R. // Development. 2010, V.137, №7, P.1075-1084
  52. Saarikangas J., Mattila P.K., Varjosalo M., Bovellan M., Hakanen J., Calzada-Wack J., Tost M., Jennen L., Rathkolb B., Hans W. // J. Cell. Sci. 2011, V.124, Pt8, P.1245-1255
  53. Staruschenko A., Pochynyuk O.M., Tong Q., Stockand J.D. // Biochim. Biophys. Acta. 2005, V.1669, №2, P.108-115
  54. Zhao H., Pykalainen A., Lappalainen P. // Curr. Opin. Cell. Biol. 2011, V.23, №1, P.14-21

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шуйский Л.С., Левченко В.В., Негуляев Ю.А., Старущенко А.В., Илатовская Д.В., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах