Calcium Signaling and Neurodegeneration

Cover Page

Cite item

Abstract

Neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and spinocerebellar ataxias (SCA) are very important both for fundamental science and for practical medicine. Despite extensive research into the causes of these diseases, clinical researchers have had very limited progress and, as of now, there is still no cure for any of these diseases. One of the main obstacles in the way of creating treatments for these disorders is the fact that their etiology and pathophysiology still remain unclear. This paper reviews results that support the so-called “calcium hypothesis of neurodegenerative diseases.” The calcium hypothesis states that the atrophic and degenerative processes in the neurons of AD, PD, ALS, HD, and SCA patients are accompanied by alterations in calcium homeostasis. Moreover, the calcium hypothesis states that this deregulation of calcium signaling is one of the early-stage and key processes in the pathogenesis of these diseases. Based on the results we reviewed, we conclude that the calcium channels and other proteins involved in the neuronal calcium signaling system are potential drug targets for AD, PD, ALS, HD, and SCA therapy.

Full Text

Calcium Signaling and Neurodegeneration
×

About the authors

I B Bezprozvanny

University of Texas Southwestern Medical Center; Institute of Cytology, Russian Academy of Sciences

Email: Ilya.Bezprozvanny@UTSouthwestern.edu
Dallas, Texas, USA; St. Petersburg

References

  1. Berridge M.J. // Neuronal Calcium Signaling. Neuron. 1998. 21:13-26.
  2. Toescu E.C., Verkhratsky A. // The Importance of Being Subtle: Small Changes in Calcium Homeostasis Control Cognitive Decline in Normal Aging. Aging Cell. 2007. 6: 267-273
  3. Gant J.C., Sama M.M., Landfield P.W., Thibault O. // Early and Simultaneous Emergence of Multiple Hippocampal Biomarkers of Aging is Mediated by Ca2+-Induced Ca2+ Release. J Neurosci. 2006. 26: 3482-3490.
  4. Foster T.C. // Calcium Homeostasis and Modulation of Synaptic Plasticity in the Aged Brain. Aging Cell. 2007. 6: 319-325.
  5. Gusella J.F., MacDonald M.E. // Molecular Genetics: Unmasking Polyglutamine Triggers in Neurodegenerative Disease. Nat Rev Neurosci. 2000. 1: 109-115.
  6. Li S., Li X.J. // Multiple Pathways Contribute to the Pathogenesis of Huntington’s Disease. Mol Neurodegener. 2006. 1: 19.
  7. Kuhn A., et al. // Mutant Huntingtin’s Effects on Striatal Gene Expression in Mice Recapitulate Changes Observed in Human Huntington’s Disease Brain and Do Not Differ with Mutant Huntingtin Length or Wild-Type Huntingtin Dosage. Hum Mol Genet. 2007. 16: 1845-1861.
  8. Bezprozvanny I., Hayden M.R., // Deranged Neuronal Calcium Signaling and Huntington’s Disease. Biochem Biophys Res Commun. 2004. 322: 1310-1317.
  9. Tang T.-S., Tu H., Chan E.Y., Maximov A., et al // Huntingtin and Huntingtin-Associated Protein 1 Influence Neuronal Calcium Signaling Mediated by Inositol-(1,4,5) Triphosphate Receptor Type 1. Neuron. 2003. 39: 227-239.
  10. Kaltenbach L.S., et al. // Huntingtin Interacting Proteins are Genetic Modifiers of Neurodegeneration. PLoS Genet. 2007. 3: e82.
  11. Tang T.-S., Slow E.J., Lupu V., et al // Disturbed Ca2+ Signaling and Apoptosis of Medium Spiny Neurons in Huntington’s Disease. Proc Natl Acad Sci USA. 2005. 102: 2602-2607.
  12. Zhang H., Li Q., Graham R.K., et al // Full-Length Mutant Huntingtin is Required for Altered Ca2+ Signaling and Apoptosis of Striatal Neurons in the YAC Mouse Model of Huntington’s Disease. Neurobiol Dis. 2008. 31: 80-88.
  13. Tang T.S., Guo C., Wang H., Chen X., Bezprozvanny I. // Neuroprotective Effects of Inositol 1,4,5-trisphosphate Receptor C-Terminal Fragment in a Huntington’s Disease Mouse Model. J Neurosci. 2009. 29: 1257-1266.
  14. Zeron M.M., Hansson O., Chen N., et al // Increased Sensitivity to N-methyl-D-aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington’s Disease. Neuron. 2002. 33: 849-860.
  15. Fan M.M., Fernandes H.B., Zhang L.Y., Hayden M.R., Raymond L.A. // Altered NMDA Receptor Trafficking in a Yeast Artificial Chromosome Transgenic Mouse Model of Huntington’s Disease. J Neurosci. 2007. 27: 3768-3779.
  16. Shehadeh J., Fernandes H.B., Zeron Mullins M.M., et al // Striatal Neuronal Apoptosis is Preferentially Enhanced by NMDA Receptor Activation in YAC Transgenic Mouse Model of Huntington’s Disease. Neurobiol Dis. 2006. 21: 392-403.
  17. Wu J., Tang T.-S., Bezprozvanny I. // Evaluation of Clinically-Relevant Glutamate Pathway Inhibitors in an In Vitro Model of Huntington’s Disease. Neurosci Lett. 2006. 407: 219-223.
  18. Ondo W.G., Mejia N.I., Hunter C.B. // A Pilot Study of the Clinical Efficacy and Safety of Memantine for Huntington’s Disease. Parkinsonism Relat Disord. 2007. 13: 453-454.
  19. Landwehrmeyer G.B., Dubois B., de Yebenes J.G., et al // Riluzole in Huntington’s Disease: A 3-Year Randomized Controlled Study. Ann Neurol. 2007. 62: 262-272.
  20. Swayne L.A., Chen L., Hameed S., Barr W., et al // Crosstalk Between Huntingtin and Syntaxin 1A Regulates N-Type Calcium Channels. Mol Cell Neurosci. 2005. 30: 339-351.
  21. Romero E., Cha G.H., Verstreken P., Ly C.V., Hughes R.E., et al // Suppression of Neurodegeneration and Increased Neurotransmission Caused by Expanded Full-Length Huntingtin Accumulating in the Cytoplasm. Neuron. 2008. 57: 27-40.
  22. Cepeda C., Wu N., Andre V.M., Cummings D.M., Levine M.S. // The Corticostriatal Pathway in Huntington’s Disease. Prog Neurobiol. 2007. 81: 253-271.
  23. Gafni J., Hermel E., Young J.E., et al // Inhibition of Calpain Cleavage of Huntingtin Reduces Toxicity: Accumulation of Calpain/Caspase Fragments in the Nucleus. J Biol Chem. 2004. 279: 20211-20220.
  24. Cowan C.M., Fan M.M., Fan J., et al // Polyglutamine-Modulated Striatal Calpain Activity in YAC Transgenic Huntington Disease Mouse Model: Impact on NMDA Receptor Function and Toxicity. J Neurosci. 2008. 28: 12725-12735.
  25. Vosler P.S., Brennan C.S., Chen J. // Calpain-Mediated Signaling Mechanisms in Neuronal Injury and Neurodegeneration. Mol Neurobiol. 2008. 38: 78-100.
  26. Bossy-Wetzel E., Petrilli A., Knott A.B. // Mutant Huntingtin and Mitochondrial Dysfunction. Trends Neurosci. 2008. 31: 609-616.
  27. Panov A.V., Gutekunst C.A., Leavitt B.R., et al // Early Mitochondrial Calcium Defects in Huntington’s Disease Are a Direct Effect of Polyglutamines. Nat Neurosci. 2002. 5: 731-736.
  28. Wang X., Zhu S., Pei Z., et al // Inhibitors of Cytochrome c Release with Therapeutic Potential for Huntington’s Disease. J Neurosci. 2008. 28: 9473-9485.
  29. Savani A.A., Login I.S. // Tetrabenazine as Antichorea Therapy in Huntington Disease: A Randomized Controlled Trial. Neurology. 2007. 68: 797; author reply 797.
  30. Tang T.S., Chen X., Liu J., Bezprozvanny I. // Dopaminergic Signaling and Striatal Neurodegeneration in Huntington’s Disease. J Neurosci. 2007. 27: 7899-7910.
  31. Vig P. J., Subramony S.H., McDaniel D.O. // Calcium Homeostasis and Spinocerebellar Ataxia-1 (SCA-1). Brain Res Bull. 2001. 56: 221-225.
  32. Lin X., Antalffy B., Kang D., Orr H.T., Zoghbi H.Y. // Polyglutamine Expansion Down-Regulates Specific Neuronal Genes before Pathologic Changes in SCA1. Nat Neurosci. 2000. 3: 157-163.
  33. Pulst S.M., Santos N., Wang D., et al // Spinocerebellar Ataxia Type 2: PolyQ Repeat Variation in the CACNA1A Calcium Channel Modifies Age of Onset. Brain. 2005. 128: 2297-2303.
  34. Haacke A., Hartl F.U., Breuer P. // Calpain Inhibition is Sufficient to Suppress Aggregation of Polyglutamine-Expanded Ataxin-3. J Biol Chem. 2007. 282: 18851-18856.
  35. Chen X., Tang T.-S., Tu H., // Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 3. J Neuroscience. 2008. 28: 12713-12724.
  36. Piedras-Renteria E.S., Watase K., Harata N., et al // Increased Expression of Alpha 1A Ca2+ Channel Currents Arising from Expanded Trinucleotide Repeats in Spinocerebellar Ataxia Type 6. J Neurosci. 2001. 21: 9185-9193.
  37. Watase K., Barrett C.F., Miyazaki T., et al // Spinocerebellar Ataxia Type 6 Knockin Mice Develop a Progressive Neuronal Dysfunction with Age-Dependent Accumulation of Mutant CaV2.1 Channels. Proc Natl Acad Sci. USA. 2008. 105: 11987-11992.
  38. van de Leemput J. et al. // Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans. PLoS Genet. 2007. 3: e108.
  39. Hardy J., Selkoe D.J. // The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science. 2002. 297: 353-356.
  40. Seabrook G.R., Ray W.J., Shearman M., Hutton M. // Beyond Amyloid: The Next Generation of Alzheimer’s Disease Therapeutics. Mol Interv. 2007. 7: 261-270.
  41. Bezprozvanny I., Mattson M.P. // Neuronal Calcium Mishandling and the Pathogenesis of Alzheimer’s Disease. Trends Neurosci. 2008. 31: 454-463.
  42. Arispe N., Rojas E., Pollard H.B. // Alzheimer Disease Amyloid Beta Protein Forms Calcium Channels in Bilayer Membranes: Blockade By Tromethamine and Aluminum. Proc Natl Acad Sci. USA. 1993. 90: 567-571.
  43. Lee G., Pollard H.B., Arispe N. // Annexin 5 and Apolipoprotein E2 Protect against Alzheimer’s Amyloid-Beta-Peptide Cytotoxicity by Competitive Inhibition at a Common Phosphatidylserine Interaction Site. Peptides. 2002. 23: 1249-1263.
  44. Simakova O., Arispe N.J. // The Cell-Selective Neurotoxicity of the Alzheimer’s Abeta Peptide is Determined by Surface Phosphatidylserine and Cytosolic ATP Levels. Membrane Binding is Required for Abeta Toxicity. J Neurosci. 2007. 27: 13719-13729.
  45. Kuchibhotla K.V., Goldman S.T., Lattarulo C.R. et al // Abeta Plaques Lead to Aberrant Regulation of Calcium Homeostasis In Vivo Resulting in Structural and Functional Disruption of Neuronal Networks. Neuron. 2008. 59: 214-225.
  46. De Felice F.G., Velasco P.T., Lambert M.P., et al // Abeta Oligomers Induce Neuronal Oxidative Stress Through an N-Methyl-D-Aspartate Receptor-Dependent Mechanism That Is Blocked by the Alzheimer Drug Memantine. J Biol Chem. 2007. 282: 11590-11601.
  47. Shankar G.M., Bloodgood B.L., Townsend M., et al // Natural Oligomers of the Alzheimer Amyloid-Beta Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. J Neurosci. 2007. 27: 2866-2875.
  48. Hsieh H., Boehm J., Sato C., et al // AMPAR Removal Underlies Abeta-Induced Synaptic Depression and Dendritic Spine Loss. Neuron 2006. 52: 831-843.
  49. Nimmrich V., Grimm C., Draguhn A., et al // Amyloid Beta Oligomers (A Beta(1-42) Globulomer) Suppress Spontaneous Synaptic Activity by Inhibition Of P/Q-Type Calcium Currents. J Neurosci. 2008. 28: 788-797.
  50. Ito E., Oka K., Etcheberrigaray R., et al // Internal Ca2+ Mobilization Is Altered in Fibroblasts from Patients with Alzheimer Disease. Proc Natl Acad Sci. USA. 1994. 91: 534-538.
  51. Leissring M.A., Paul B.A., Parker I., Cotman C.W., LaFerla F.M. // Alzheimer’s Presenilin-1 Mutation Potentiates Inositol 1,4,5-Trisphosphate-Mediated Calcium Signaling in Xenopus Oocytes. J Neurochem. 1999. 72: 1061-1068.
  52. Stutzmann G.E., Caccamo A., LaFerla F.M., Parker I. // Dysregulated IP3 Signaling in Cortical Neurons of Knock-In Mice Expressing an Alzheimer’s-Linked Mutation in Presenilin1 Results in Exaggerated Ca2+ Signals and Altered Membrane Excitability. J Neurosci. 2004. 24: 508-513.
  53. Stutzmann G.E., Smith I., Caccamo A., Oddo S., Laferla F.M., Parker I. // Enhanced Ryanodine Receptor Recruitment Contributes to Ca2+ Disruptions in Young, Adult, and Aged Alzheimer’s Disease Mice. J Neurosci, 2006, 26: 5180-5189.
  54. Leissring M.A., Akbari Y., Fanger C.M., et al // Capacitative Calcium Entry Deficits and Elevated Luminal Calcium Content in Mutant Presenilin-1 Knockin Mice. J Cell Biol. 2000. 149: 793-798.
  55. Yoo A.S., Cheng I., Chung S., et al // Presenilin-Mediated Modulation of Capacitative Calcium Entry. Neuron. 2000 27: 561-572.
  56. Chan S.L., Mayne M., Holden C.P., Geiger J.D., Mattson M.P. // Presenilin-1 Mutations Increase Levels of Ryanodine Receptors and Calcium Release in PC12 Cells and Cortical Neurons. J Biol Chem. 2000. 275: 18195-18200.
  57. Rybalchenko V., Hwang S.Y., Rybalchenko N., Koulen P. // The Cytosolic N-Terminus of Presenilin-1 Potentiates Mouse Ryanodine Receptor Single Channel Activity. Int J Biochem Cell Biol. 2008. 40: 84-97.
  58. Cai C., Lin P., Cheung K.H., et al // The Presenilin-2 Loop Peptide Perturbs Intracellular Ca2+ Homeostasis and Accelerates Apoptosis. J Biol Chem. 2006. 281: 16649-16655.
  59. Cheung K.H., Shineman D., Muller M., et al // Mechanism of Ca2+ Disruption in Alzheimer’s Disease by Presenilin Regulation of Insp(3) Receptor Channel Gating. Neuron. 2008. 58: 871-883.
  60. Green K.N., Demuro A., Akbari Y., et al // SERCA Pump Activity Is Physiologically Regulated by Presenilin and Regulates Amyloid Beta Production. J Cell Biol. 2008. 181: 1107-1116.
  61. Tu H., Nelson O., Bezprozvanny A., et al // Presenilins Form ER Calcium Leak Channels, a Function Disrupted by Mutations Linked to Familial Alzheimer’s Disease. Cell. 2006. 126: 981-993.
  62. Nelson O., Tu H., Lei T., et al // Familial Alzheimer Disease-Linked Mutations Specifically Disrupt Ca2+ Leak Function of Presenilin 1. J Clin Invest. 2007. 117: 1230-1239.
  63. Trinchese F., Fa M., Liu S., et al // Inhibition of Calpains Improves Memory and Synaptic Transmission in a Mouse Model of Alzheimer Disease. J Clin Invest. 2008. 118: 2796-2807.
  64. Palop J.J., Jones B., Kekonius L., et al // Neuronal Depletion of Calcium-Dependent Proteins in the Dentate Gyrus Is Tightly Linked to Alzheimer’s Disease-Related Cognitive Deficits. Proc Natl Acad Sci. U.S.A. 2003. 100: 9572-9577.
  65. Sanz-Blasco S., Valero R.A., Rodriguez-Crespo I., Villalobos C., Nunez L. // Mitochondrial Ca2+ Overload Underlies Abeta Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs. PLoS. 2008. ONE 3: e2718.
  66. Dreses-Werringloer U. et al. // A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, A Beta Levels, and Alzheimer’s Disease Risk. Cell. 2008. 133: 1149-1161.
  67. Bertram L., Schjeide B.M., Hooli B., et al // No Association Between CALHM1 and Alzheimer’s Disease Risk. Cell. 2008. 135: 993-994; author reply 994-996.
  68. Arispe N., Diaz J.C., Simakova O. // Abeta Ion Channels. Prospects for Treating Alzheimer’s Disease with Abeta Channel Blockers. Biochim Biophys Acta. 2007. 1768: 1952-1965.
  69. Lipton S.A. // Paradigm Shift in Neuroprotection by NMDA Receptor Blockade: Memantine and Beyond. Nat Rev Drug Discov. 2006. 5: 160-170.
  70. Chaturvedi R.K., Beal M.F. // Mitochondrial Approaches for Neuroprotection. Ann NY Acad Sci. 2008.1147: 395-412.
  71. Doody R.S., Gavrilova S.I., Sano M., et al // Effect of Dimebon on Cognition, Activities of Daily Living, Behavior, and Global Function in Patients with Mild-To-Moderate Alzheimer’s Disease: A Randomised, Double-Blind, Placebo-Controlled Study. Lancet. 2008. 372: 207-215.
  72. Bernales S., Wagner S., Protter A.A., Hung D.T. // Dimebon Induces Neurite Outgrowth and Mitochondrial Stabilization. Society for Neuroscience Abstracts 543.29.
  73. Wu J., Li Q., Bezprozvanny I. // Evaluation of Dimebon in Cellular Model of Huntington’s Disease. Mol Neurodegener. 2008. 3: 15.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Bezprozvanny I.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies