Stable Expression of Recombinant Factor VIII in CHO Cells Using Methotrexate-Driven Transgene Amplification
- Authors: Orlova N.A.1,2, Kovnir S.V.1,2, Vorobiev I.I.1,2, Yuriev A.S.2, Gabibov A.G.1, Vorobiev A.I.2
-
Affiliations:
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Hematology Research Centre Ministry of Healthcare and Social Development of the Russian Federation
- Issue: Vol 4, No 1 (2012)
- Pages: 93-100
- Section: Research Articles
- Submitted: 17.01.2020
- Published: 15.03.2012
- URL: https://actanaturae.ru/2075-8251/article/view/10641
- DOI: https://doi.org/10.32607/20758251-2012-4-1-93-100
- ID: 10641
Cite item
Abstract
Prophylaxis and treatment of inherited clotting disorder hemophilia A requires regular administration of factor VIII. Recombinant factor VIII, which is produced in CHO or BHK cells, is equivalent to the plasma derived one and is prevalent in current clinical practice in developed countries. Development of a biosimilar recombinant FVIII requires the creation of a highly productive clonal cell line and generation of monoclonal antibodies suitable for affinity purification of the product. Methotrexate-driven transgene amplification of genetic cassettes that code full-length and truncated variants of FVIII under the control of the CMV promoter was studied. It was shown that the expression level of the truncated variant of FVIII is 6.5 times higher than that of the full-length molecule. The transgene amplification procedure was sufficient for a twofold increase of the expression level in the transfected cells pool and subsequent selection of the clonal line, stably producing truncated FVIII at the level of 0.52 IU/ml during cultivation in a chemically defined protein-free culture medium. Four generated mouse monoclonal antibodies toward the heavy chain of FVIII were found suitable for binding the truncated variant of FVIII directly from the conditioned medium and elution of the FVIII with a more than 85% yield and normal pro-coagulant activity. The producer cell line and monoclonal antibodies obtained are sufficient for the development of upstream and downstream processes of biosimilar FVIII production. Generation of more productive cell lines by the use of stronger, nonviral promoters and shorter cDNA of FVIII will be the subject of further studies.
About the authors
N. A. Orlova
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Hematology Research Centre Ministry of Healthcare and Social Development of the Russian Federation
Email: ptichman@gmail.com
Russian Federation
S. V. Kovnir
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Hematology Research Centre Ministry of Healthcare and Social Development of the Russian Federation
Email: ptichman@gmail.com
Russian Federation
I. I. Vorobiev
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Hematology Research Centre Ministry of Healthcare and Social Development of the Russian Federation
Author for correspondence.
Email: ptichman@gmail.com
Russian Federation
A. S. Yuriev
Hematology Research Centre Ministry of Healthcare and Social Development of the Russian Federation
Email: ptichman@gmail.com
Russian Federation
A. G. Gabibov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: ptichman@gmail.com
Russian Federation
A. I. Vorobiev
Hematology Research Centre Ministry of Healthcare and Social Development of the Russian Federation
Email: ptichman@gmail.com
Russian Federation
References
- Blumel J., Schmidt I., Effenberger W., Seitz H., Willkommen H., Brackmann H.H., Lower J., Eis-Hubinger A.M. // Transfusion. 2002. V. 42. № 11. P. 1473-1481.
- Yokozaki S., Fukuda Y., Nakano I., Katano Y., Toyoda H., Takamatsu J. // Blood. 1999. V. 94. № 10. P 3617.
- Evatt B.L. // Haemophilia. 1998. V. 4. № 4. P. 628-633.
- Thompson A.R. // Semin. Thromb. Hemost. 2003. V. 29. № 1. P. 11-22.
- Pittman D.D., Alderman E.M., Tomkinson K.N., Wang J.H., Giles A.R., Kaufman R.J. // Blood. 1993. V. 81. № 11. P. 2925-2935.
- Lind P., Larsson K., Spira J., Sydow-Backman M., Almstedt A., Gray E., Sandberg H. // Eur. J. Biochem. 1995. V. 232. № 1. P. 19-27.
- Kessler C.M., Gill J.C., White G.C., Shapiro A., Arkin S., Roth D.A., Meng X., Lusher J. M. // Haemophilia. 2005. V. 11. № 2. P 84-91.
- Chun B.H., Park S.Y., Chung N., Bang W.G. // Biotechnol. Lett. 2003. V. 25. № 4. P. 315-319.
- Harlow E., Lanes D. Antibodies: A laboratory manual. Cold Spring Harbor. N.Y.; Cold Spring Harbor Lab. Press, 1988. 726 p.
- Fann C.H., Guirgis F., Chen G., Lao M.S., Piret J.M. // Biotechnol. Bioeng. 2000. V. 69. № 2. P 204-212.
- Assaraf Y.G., Molina A., Schimke R.T. // J. Biol. Chem. 1989. V. 264. № 31. P 18326-18334.
- Kelley B.D., Booth J., Tannatt M., Wub Q.L., Ladner R., Yuc J., Potter D., Ley A. // J. Chromatogr. A. 2004. V. 1038. № 1-2. P. 121-130.
- Kelley B., Jankowski M., Booth J. // Haemophilia. 2010. V. 16. № 5. P 717-725.
- Griffith M. // Ann. Hematol. 1991. V. 63. № 3. P 131-137.