Conformational Differences between Active Angiotensins and Their Inactive Precursors

Cover Page

Cite item

Abstract

The peptide conformation in the context of a protein polypeptide chain is influenced by proximal amino acid residues. However, the mechanisms of this interference remain poorly understood. We studied the conformation of angiotensins 1, 2 and 3, which are produced naturally in a sequential fashion from a precursor protein angiotensinogen and contain an identical peptide core structure. Using the example of angiotensins 1, 2 and 3, it was shown that similar amino acid sequences may have significant conformational differences in various molecules. In order to assess the conformational changes, we developed a panel of high-affinity mouse monoclonal antibodies against angiotensins 1, 2 and 3 and studied their cross-reactivity in indirect and competitive ELISAs. It was found that the conformations of inactive angiotensin1 and the corresponding fragment of angiotensinogen are similar; the same is true for the conformations of active angiotensins 2 and 3, whereas the conformations of homologous fragments in the active and inactive angiotensins differ significantly.

About the authors

O. N. Solopova

Russian Research Center for Molecular Diagnostics and Therapy

Author for correspondence.
Email: solopova@msn.com
Россия

L. P. Pozdnyakova

Russian Research Center for Molecular Diagnostics and Therapy

Email: solopova@msn.com
Россия

N. E. Varlamov

Russian Research Center for Molecular Diagnostics and Therapy

Email: solopova@msn.com
Россия

M. N. Bokov

Russian Research Center for Molecular Diagnostics and Therapy

Email: solopova@msn.com
Россия

E. V. Morozkina

Bach Institute of Biochemistry, Russian Academy of Sciences

Email: solopova@msn.com
Россия

Т. А. Yagudin

Bach Institute of Biochemistry, Russian Academy of Sciences

Email: solopova@msn.com
Россия

P. G. Sveshnikov

Russian Research Center for Molecular Diagnostics and Therapy

Email: solopova@msn.com
Россия

References

  1. Kohler G., Milstein C. // Nature. 1975. V. 256. P. 495-497.
  2. Sveshnikov P.G., Malaitsev V.V., Bogdanova I.M., Solopova O.N. Vvedenie v molekulyarnuyu immunologiyu i gibridomnuyu tehnologiyu (Introduction into molecular immunology and hybridoma technology). M.: MSU, 2006.
  3. de Gasparo M., Catt K.J., Inagami T., Wright J.W., Unger T. // Pharmacol. Rev. 2000. V. 52. P 415-472.
  4. Boucher R., Demassieux S., Garcia R., Genest J. // Circ. Res. 1977. V. 41. P 26-29.
  5. WO2005/028510. Methods, Kits and Compositions for the Developments and Use of Monoclonal Antibodies Specific to Antigens of Low Immunogenecity. Patent USA. 2005.
  6. Sveshnikov P.G., Gorodetskaya S.B., Shemchukova O.B., Solopova O.N., Bokov M.N., Varlamov N.E., Ulianov A.M., Lyutova E.M., Kiselev V.I., Budarina S.O., Ashrafian L.A. // Molecular Medicine. 2009. V. 4. P. 45-50.
  7. Engvall E., Perlmann P. // Immunochemistry. 1971. V. 8. № 9. P 871-874.
  8. Engvall E., Jonsson K., Perlmann P. // Biochim. Biophys. Acta. 1971. V. 28. 251. № 3. P. 427-434.
  9. Jungbauer A., Tauer C., Reiter M., Purtscher M., Wenisch E., Steindl F., Buchacher A., Katinger H. // J. Chromatogr. 1989. V. 476. P. 257-268.
  10. Laemmli U.K. // Nature. 1970. V. 227. P 680-685.
  11. Klotz I.M. The Proteins / Eds Neurath H., Bailey K. N.Y.: Acad. Press. V. 1. 1953. P 727.
  12. Friguet B., Chaffotte A.F., Djavadi-Ohaniance L., Goldberg M.E. // J. Immunol. Methods. 1985. V. 77. P. 305-319.
  13. Clouston W.M., Evans B.A., Haralambidis J., Richards R.I. // Genomics. 1988. V. 2. Р 240-248.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Solopova O.N., Pozdnyakova L.P., Varlamov N.E., Bokov M.N., Morozkina E.V., Yagudin Т.А., Sveshnikov P.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies