Alu- and 7SL RNA Analogues Suppress MCF-7 Cell Viability through Modulating the Transcription of Endoplasmic Reticulum Stress Response Genes
- Authors: Baryakin D.N.1, Semenov D.V.1, Savelуeva A.V.1,2, Koval O.A.1, Rabinov I.V.1, Kuligina E.V.1, Riсhter V.A.1
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 5, No 4 (2013)
- Pages: 83-93
- Section: Research Articles
- Submitted: 17.01.2020
- Published: 15.12.2013
- URL: https://actanaturae.ru/2075-8251/article/view/10578
- DOI: https://doi.org/10.32607/20758251-2013-5-4-83-93
- ID: 10578
Cite item
Abstract
11% of the human genome is composed of Alu-retrotransposons, whose transcription by RNA polymerase III (Pol III) leads to the accumulation of several hundreds to thousands of Alu-RNA copies in the cytoplasm. Expression of Alu-RNA Pol III is significantly increased at various levels of stress, and the increase in the Alu-RNA level is accompanied by a suppression of proliferation, a decrease in viability, and induction of apoptotic processes in human cells. However, the question about the biological functions of Pol III Alu-transcripts, as well as their mechanism of action, remains open. In this work, analogues of Alu-RNA and its evolutionary ancestor, 7SL RNA, were synthesized. Transfection of human breast adenocarcinoma MCF-7 cells with the Alu-RNA and 7SL RNA analogues is accompanied by a decrease in viability and by induction of proapoptotic changes in these cells. The analysis of the combined action of these analogues and actinomycin D or tamoxifen revealed that the decreased viability of MCF-7 cells transfected with Alu-RNA and 7SL RNA was due to the modulation of transcription. A whole transcriptome analysis of gene expression revealed that increased gene expression of the transcription regulator NUPR1 (p8), as well as the transcription factor DDIT3 (CHOP), occurs under the action of both the Alu- and 7SL RNA analogues on MCF-7 cells. It has been concluded that induction of proapoptotic changes in human cells under the influence of the Alu-RNA and 7SL RNA analogues is related to the transcriptional activation of the genes of cellular stress factors, including the endoplasmic reticulum stress response factors.
About the authors
D. N. Baryakin
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: baryakindn@niboch.nsc.ru
Россия
D. V. Semenov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: baryakindn@niboch.nsc.ru
Россия
A. V. Savelуeva
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: baryakindn@niboch.nsc.ru
Россия
O. A. Koval
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: baryakindn@niboch.nsc.ru
Россия
I. V. Rabinov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: baryakindn@niboch.nsc.ru
Россия
E. V. Kuligina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: baryakindn@niboch.nsc.ru
Россия
V. A. Riсhter
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: baryakindn@niboch.nsc.ru
Россия
References
- International Human Genome Sequencing Consortium // Nature 2001, V.409, №6822, P.860-921
- Deininger P.L., Batzer M.A. // Genome Res. 2002, V.12, №10, P.1455-1465
- Batzer M.A., Deininger P.L., Hellmann-Blumberg U., Jurka J., Labuda D., Rubin C.M., Schmid C.W., Zietkiewicz E., Zuckerkandl E. // J. Mol. Evol. 1996, V.42, №1, P.3-6
- Jurka J., Krnjajic M., Kapitonov V.V., Stenger J.E., Kokhanyy O. // Theor. Popul. Biol. 2002, V.61, №4, P.519-530
- Dewannieux M., Esnault C., Heidmann T. // Nat. Genet. 2003, V.35, №1, P.41-48
- Batzer M.A., Deininger P.L. // Nat. Rev. Genet. 2002, V.3, №5, P.370-379
- Liu W.M., Maraia R.J., Rubin C.M., Schmid C.W. // Nucleic Acids Res. 1994, V.22, №6, P.1087-1095
- Liu W.M., Chu W.M., Choudary P.V., Schmid C.W. // Nucleic Acids Res. 1995, V.23, №10, P.1758-1765
- Shaikh T.H., Roy A.M., Kim J., Batzer M.A., Deininger P.L. // J. Mol. Biol. 1997, V.271, №2, P.222-234
- Maraia R.J., Driscoll C.T., Bilyeu T., Hsu K., Darlington G.J. // Mol. Cell Biol. 1993, V.13, №7, P.4233-4241
- Sarrowa J., Chang D.Y., Maraia R.J. // Mol. Cell Biol. 1997, V.17, №3, P.1144-1151
- Häsler J., Strub K. // Nucleic Acids Res. 2006, V.34, №19, P.5491-5497
- Sakamoto K., Fordis C.M., Corsico C.D., Howard T.H., Howard B.H. // J. Biol. Chem. 1991, V.266, №5, P.3031-3038
- Chu W.M., Ballard R., Carpick B.W., Williams B.R., Schmid C.W. // Mol. Cell Biol. 1998, V.18, №1, P.58-68
- Rubin C.M., Kimura R.H., Schmid C.W. // Nucleic Acids Res. 2002, V.30, №14, P.3253-3261
- Hasler J., Strub K. // Nucleic Acids Res. 2006, V.34, №8, P.2374-2385
- Bovia F., Wolff N., Ryser S., Strub K. // Nucleic Acids Res. 1997, V.25, №2, P.318-326
- Chang D.Y., Hsu K., Maraia R.J. // Nucleic Acids Res. 1996, V.24, №21, P.4165-4170
- Mariner P.D., Walters R.D., Espinoza C.A., Drullinger L.F., Wagner S.D., Kugel J.F., Goodrich J.A. // Molecular Cell 2008, V.29, №4, P.499-509
- Yakovchuk P., Goodrich J.A., Kugel J.F. // Proc. Natl. Acad. Sci. USA. 2009, V.106, №14, P.5569-5574
- Kaneko H., Dridi S., Tarallo V., Gelfand B.D., Fowler B.J., Cho W.G., Kleinman M.E., Ponicsan S.L., Hauswirth W.W., Chiodo V.A. // Nature 2011, V.471, №7338, P.325-330
- Tarallo V., Hirano Y., Gelfand B.D., Dridi S., Kerur N., Kim Y., Cho W.G., Kaneko H., Fowler B.J., Bogdanovich S. // Cell. 2012, V.149, №4, P.847-859
- Galluzzi L., Vitale I., Kepp O., Seror C., Hangen E., Perfettini J.L., Modjtahedi N., Kroemer G. // Methods Enzymol. 2008, V.442, P.355-374
- Stepanov G.A., Semenov D.V., Savelyeva A.V., Kuligina E.V., Koval O.A., Rabinov I.V., Richter V.A. // Biomed. Res. 2013, P.e.656158
- Kroemer G., Galluzzi L., Brenner C. // Physiol. Rev. 2007, V.87, №1, P.99-163
- Demchenko A.P. // Exp. Oncol. 2012, V.34, №3, P.263-268
- Berridge M.V., Herst P.M., Tan A.S. // Biotechnol. Annu. Rev. 2005, V.11, P.127-152
- Siddik Z.H. // Oncogene. 2003, V.22, №47, P.7265-7279
- Balachandran S., Barber G.N. // Meth. Mol. Biol. 2007, V.383, P.277-301
- Lindner D.J., Kolla V., Kalvakolanu D.V., Borden E.C. // Mol. Cell Biochem. 1997, V.167, №1-2, P.169-177
- Iacopino F., Robustelli della Cuna G., Sica G. // Int. J. Cancer. 1997, V.71, №6, P.1103-1108
- Der S.D., Zhou A., Williams B.R., Silverman R.H. // Proc. Natl. Acad. Sci. USA. 1998, V.95, №26, P.15623-15628
- Goruppi S., Iovanna J.L. // J. Biol. Chem. 2010, V.285, №3, P.1577-1581
- Guo X., Wang W., Hu J., Feng K., Pan Y., Zhang L., Feng Y. // Anat. Rec. (Hoboken). 2012, V.295, №12, P.2114-2121
- Carracedo A., Lorente M., Egia A., Blázquez C., García S., Giroux V., Malicet C., Villuendas R., Gironella M., González-Feria L. // Cancer Cell. 2006, V.9, №4, P.301-312
- Tabas I., Ron D. // Nat. Cell Biol. 2011, V.13, №3, P.184-190
- Riemer J., Appenzeller-Herzog C., Johansson L., Bodenmiller B., Hartmann-Petersen R., Ellgaard L. // Proc. Natl. Acad. Sci. USA. 2009, V.106, №35, P.14831-14836
- Siu F., Chen C., Zhong C., Kilberg M.S. // J. Biol. Chem. 2001, V.276, №51, P.48100-48107