Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism

Cover Page

Cite item


Most eukaryotic messenger RNAs are capped, spliced, and polyadenylated via co-transcriptional processes that are coupled to each other and to the transcription machinery. Coordination of these processes ensures correct RNA maturation and provides for the diversity of the transcribed isoforms. Thus, RNA processing is a chain of events in which the completion of one event is coupled to the initiation of the next one. In this context, the relationship between splicing and polyadenylation is an important aspect of gene regulation. We have found that cryptic polyadenylation signals are widely distributed over the intron sequences of Drosophila melanogaster. As shown by analyzing the distribution of genes arranged in a nested pattern, where one gene is fully located within an intron of another gene, overlapping of putative polyadenylation signals is a fairly common event affecting about 17% of all genes. Here we show that polyadenylation signals are silenced within introns: the poly(A) signal is utilized in the exonic but not in the intronic regions of the transcript. The transcription does not end within the introns, either in a transient reporter system or in the genomic context, while deletion of the 5'-splice site restores their functionality. According to a full Drosophila transcriptome analysis, utilization of intronic polyadenylation signals occurs very rarely and such events are likely to be inducible. These results confirm that the transcription apparatus ignores premature polyadenylation signals for as long as they are intronic.

Full Text

Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism


About the authors

M. V. Tikhonov

Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences

Author for correspondence.
Russian Federation

P. G. Georgiev

Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences

Russian Federation

O. G. Maksimenko

Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences

Russian Federation


  1. Auboeuf D., Dowhan D.H., Dutertre M., Martin N., Berget S.M., O’Malley B.W. // Mol Cell Biol. 2005, V.25, P.5307-5316
  2. Bentley D.L. // Curr Opin Cell Biol. 2005, V.17, P.251-256
  3. Calvo O., Manley J.L. // Genes Dev. 2003, V.17, P.1321-1327
  4. Kornblihtt A.R., de la Mata M., Fededa J.P., Munoz M.J., Nogues G. // RN A. 2004, V.10, P.1489-1498
  5. Maniatis T., Reed R. // Nature 2002, V.416, P.499-506
  6. Dantonel J.C., Murthy K.G., Manley J.L., Tora L. // Nature 1997, V.389, P.399-402
  7. Ujvári A., Luse D.S. // J Biol Chem. 2004, V.279, P.49773-49779
  8. Niwa M., Rose S.D., Berget S.M. // Genes Dev. 1990, V.4, P.1552-1559
  9. Niwa M., Berget S.M. // Genes Dev. 1991, V.5, P.2086-2095
  10. Dye M.J., Proudfoot N.J. // Mol Cell. 1999, V.3, P.371-378
  11. Vagner S., Vagner C.C., Mattaj I.W. // Genes Dev. 2000, V.14, P.403-413
  12. Kyburz A., Friedlein A., Langen H., Keller W. // Mol Cell. 2006, V.23, P.195-205
  13. Millevoi S., Loulergue C., Dettwiler S., Karaa S.Z., Keller W., Antoniou M., Vagner S. // EMBO J. 2006, V.25, P.4854-4864
  14. Rigo F., Martinson H.G. // Mol Cell Biol. 2008, V.28, P.849-862
  15. Rigo F., Martinson H.G. // RN A. 2009, V.15, P.823-836
  16. Awasthi S., Alwine J.C. // RN A. 2003, V.9, P.1400-1409
  17. Guo J., Garrett M., Micklem G., Brogna S. // Mol Cell Biol. 2011, V.31, P.639-651
  18. Andersen P.K., Lykke-Andersen S., Jensen T.H. // Genes Dev. 2012, V.26, P.2169-79
  19. Gunderson S.I., Polycarpou-Schwarz M., Mattaj I.W. // Mol Cell. 1998, V.1, P.255-264
  20. Kaida D., Berg M.G., Younis I., Kasim M., Singh L.N., Wan L., Dreyfuss G. // Nature 2010, V.468, P.664-668
  21. Goraczniak R., Behlke M.A., Gunderson S.I. // Nat Biotechnol. 2009, V.27, P.257-263
  22. Abad X., Vera M., Jung S.P., Oswald E., Romero I., Amin V., Fortes P., Gunderson S.I. // Nucleic Acids Res. 2008, V.36, P.2338-2352
  23. Tian B., Pan Z., Lee J.Y. // Genome Res. 2007, V.17, P.156-165
  24. Berg M.G., Singh L.N., Younis I., Liu Q., Pinto A.M., Kaida D., Zhang Z., Cho S., Sherrill-Mix S., Wan L., Dreyfuss G. // Cell. 2012, V.150, P.53-64
  25. Cheng Y., Miura R.M., Tian B. // Bioinformatics. 2006, V.22, P.2320-2325
  26. McQuilton P., St Pierre S.E., Thurmond J. // Nucleic Acids Res. 2012, V.40, P.D706-D714
  27. Graveley B.R., Brooks A.N., Carlson J.W., Duff M.O., Landolin J.M., Yang L., Artieri C.G., van Baren M.J., Boley N., Booth B.W. // Nature 2011, V.471, P.473-479
  28. Celniker S.E., Dillon L.A., Gerstein M.B., Gunsalus K.C., Henikoff S., Karpen G.H., Kellis M., Lai E.C., Lieb J.D., MacAlpine D.M. // Nature 2009, V.459, P.927-930
  29. Hernandez G., Vazquez-Pianzola P., Sierra J.M., Rivera-Pomar R. // RN A. 2004, V.10, P.1783-1797
  30. Langemeier J., Radtke M., Bohne J. // RN A Biol. 2013, V.10, P.180-184
  31. Langemeier J., Schrom E.M., Rabner A., Radtke M., Zychlinski D., Saborowski A., Bohn G., Mandel-Gutfreund Y., Bodem J., Klein C., Bohne J. // EMBO J. 2012, V.31, P.4035-44
  32. West S., Gromak N., Proudfoot N.J. // Nature 2004, V.432, P.522-525
  33. Luo W., Johnson A.W., Bentley D.L. // Genes Dev. 2006, V.20, P.954-965
  34. Dye M.J., Gromak N., Proudfoot N.J. // Mol Cell. 2006, V.21, P.849-59

Copyright (c) 2013 Tikhonov M.V., Georgiev P.G., Maksimenko O.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies