The Interaction between the RNA-Dependent RNA-Polymerase of the Hepatitis Virus and RNA Matrices

Обложка

Цитировать

Полный текст

Аннотация

Полный текст

Hepatitis C is one of the most dangerous and widespread viral diseases. Currently, the World Health Organization estimates that about 170 million people are infected with the hepatitis C virus (HCV), the causative agent of infection, in almost every country in the world. The RN A-dependent RN A-polymerase (R-RN AP, virus nonstructural protein) is a key fragment that carries out HCV genome replication. R-RN AP is about 65 kDA in molecular weight and localized on the endoplasmic reticulum membrane of infected hepatic cells by the C-tail α-spiral transmembrane domain (21 a.r.). One characteristic feature of R-RN AP is its ability to catalyze RN A synthesis by both primer-dependent and primer-independent (de novo) mechanisms [1]. In the first case, in the in vitro experiments, the primer-matrix poly(rA)-oligo(rU) duplex is used as the RN A matrix; in the second case, the HCV genome fragments are used. It is suggested that oligomer from several identical R-RN AP molecules takes part in the replication. Moreover, oligomer was discovered to be composed of H502 and E18 amino-acid residues located in the interaction area of protein globules [2]. Earlier, we obtained the E.coli strain (the HCV R-RN AP producer) which allows a highly purified recombinant protein with a cell culture yield of up to 6 mg/l to be created and we developed a procedure for enzyme purification to the homogeneous condition (the data of electrophoresis in the polyacrylamide gel) [3]. The purification procedure included methods similar to those described in the corresponding literature [4]; the kinetic parameters of the primer-dependent reaction determined for the polymerase sample were consistent with the literature data as well [5].
×

Список литературы

  1. Bressanelli S., Tomei L., Roussel A., Incitti I., Vitale R.L., Mathieu M., De Francesco R., Rey F.A. // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 13034-13039
  2. Qin W., Luo H., Nomura T., Hayashi N., Yamashita T., Murakami S. // J Biol Chem. 2002. V.277. №3. Р. 2132-2137.
  3. Ivanov A.V., Korovina A.N., Tunitskaya V.L., Kostyuk D.A., Rechinsky V.O., Kukhanova M.K., Kochetkov S.N. // Prot. Expr Purif. 2006 V/ 48. № 1. Р. 14-23.
  4. Hengen P. // Trends Biochem Sci. 1995 Jul;20(7):285-6.
  5. Zhong, W., Ferrari, E., Lesburg, C.A., Maag, D., Ghosh, S.K., Cameron,C.E., Lau, J.Y., Hong Z. // (2000) J.Virol., 74, P. 9134-9143.
  6. Bradford M.M. // 1976 May 7; 72:248-54.
  7. Tunitskaya V.L., Akbarov A.Kh., Luchin S.V., Memelova L.V., Rechinsky V.O., Kochetkov S.N. // Eur J Biochem. 1990. V.191 No 1. Р. 99-103.
  8. Varfolomeev S.D., Gurevich K.G. Biokinetics, М., Grand, 1998, 720 p.
  9. Wang Q.M., Hockman M.A., Staschke K., Johnson R.B., Case K.A., Lu J., Parsons S., Zhang F., Rathnachalam R., Kirkegaard K., Colacino J.M. // J Virol. 2002 Apr; 76(8):3865-72.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Konduktorov K.A., Lyudva G.S., Ivanov A.V., Tunitskaya V.L., Kochetkov S.N., 2009

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах