Self-Renewalof Stem Cells

Обложка

Цитировать

Полный текст

Аннотация

Asymmetric division is one of the most fundamental characteristics of adult stem cells , which ensures one daughter cell maintains stem cell status and the other daughter cell becomes committed to differentiation. New data emerged recently that allow us to conclude that asymmetric division has another important aspect: it enables self-maintenance of stem cells.

Полный текст

The central aspect of stem cell biology is asymmetric division. Earlier it was suggested that with the help of asymmetric division two problems could be solved at the same time: one daughter cell preserves the qualities of the stem cell and continues to self- renew, whereas the other acquires the ability to differentiate [1. 2, 3, 4]. Stem cell niches create an asymmetric microenvironment and control local processes of proliferation and differentiation of stem cells through the integration of signals from neighbor cells, from the organism, and from the external environment [5]. Niches create a system of signals directed toward the maintenance of stem cells. That has been studied in detail on germline stem cells in Drosophila. For example, it was shown on the germinal stem cells in the Drosophila ovary how the signal from the stromal cells (Dpp) regulates the self-renewal of the stem cells and influences the fate of the daughter cells [6]. In the process of ontogenesis and during the neoplastic transformation, stem cells may divide both symmetrically and asymmetrically, depending on the circumstances under which they reside [2]. Asymmetric division and cell–cell interactions are universal mechanisms of the formation of cell diversity and are of primary importance in development of multicellular organisms. Diversity of cell types may be created in two major ways [7]. One way is when a great number of identical cells are initially formed which later acquire various ways of differentiation due to cell–cell interaction. In another case, daughter cells become different from their time of birth when, in the process of mitosis of polarized mother cell, cell fate determinants segregate only in one of the daughter cells. This distribution of determinants provides for specialization of one daughter cell in a certain way, which differs from the specialization of the sister cell.
×

Список литературы

  1. Watt F M., Hogan B.L. // Science. 2000. V. 287. P. 1427–1430.
  2. Morrison S.J., Kimble J. // Nature. 2006. V. 441. P. 1068 –1074.
  3. Fuchs E. // J. Cell Biol. 2008. V. 180. P. 273–284.
  4. Lin H. // J. Cell Biol. 2008. V. 180. P. 257–260.
  5. Fuchs E., Tumbar T., Guasch G. // Cell. 2004. V. 116. P. 769–778.
  6. Chen D, McKearin D. // Curr. Biol. 2003. V. 13. P. 1786–1791.
  7. Horvitz H.R., Herskowitz H. // Cell. 1992. V. 68. P. 237–255.
  8. Schierenberg E. // BioEssays. 2001. V. 23. P. 841–847.
  9. Wolpert L. // J. Cell Sci. 1988. Suppl. 10. P. 1–9.
  10. Knoblich J.A. // Nature Rev. Mol. Cell Biol. 2001. V. 2. P. 11–20.
  11. Newton A., Ohta N. // Ann. Rev. Microbiol. 1990. V. 44. P. 689–719.
  12. Lawler M.L., Brun Y.V. // Cell. 2006. V. 124. P. 891–893.
  13. Kirk D., Kaufman M., Keeling R., Stamer K. // Development. 1991. V. 1 (Suppl.). P.67–82.
  14. Strome S. // Int. Rev. Cytol. 1989. V. 114. P. 81–123.
  15. Lin H., Schagat T. // Trends in Genet. 1997. V. 13. P. 33–39.
  16. Shen Q., Zhong W., Jan Y.N., Temple S. // Development. 2002. V. 129. P. 4843–4853.
  17. Roegiers F., Jan Y.N. // Curr. Opin. Cell Biol. 2004. V. 16. P. 195–205.
  18. Guo S., Kempus K.J. // Curr. Opin. Genet. Develop. 1996. V. 6. P. 408–415.
  19. Bieberich E., MacKinnon S., Silva J., Noggle S., Condie B.G. // J. Cell Biol. 2003. V. 162. P. 469–479.
  20. Hatzold J. , Conradt B. // PloS Biol. 2008. V. 6. Issue 4 | e84.
  21. Bilder D., Li M., Perriman N. // Science. 2000. V. 289. P. 113–116.
  22. Johnson K., Wodarz A. // Nature Cell Biol. 2003. V.5. P. 12–14.
  23. Caussinus, E., Gonzalez C. // Nature Genet. 2005. V. 37. P. 1125–1129.
  24. Chia W., Somers W.G., Wang H. // J. Cell Biol. 2008. V. 180. P. 267–272.
  25. Margolis B., Borg J-P. // J. Cell Sci. 2005. V. 118. P. 5157–5159.
  26. Assemat E., Bazellieres E., Pallesi-Pocachard E. et al. // Biochim. Biophys. Acta. 2008. V. 1778. P. 614–30.
  27. Ohshiro T., Yagami T., Zhang C., Matsuzaki F. // Nature. 2000. V. 408. P. 593–596.
  28. Betschinger, J., Mechtler K., Knoblich J.A. // Nature. 2003. V. 422. P. 326–330.
  29. Barres B.A., Siderovski D.P. Knoblich J.A. // Neuron. 2005. V. 48. P. 539–545.
  30. Petritsch, C., Tavosanis, G., Turck, C.W. et al. // Dev. Cell. 2003. V. 4. P. 273–281.
  31. Wirtz-Peitz F., Nishimura T., Knoblich J.A. // Cell. 2008. V. 135. P. 161–173.
  32. Kusch J., Liakopoulos D., Barral Y. // Trends Cell Biol. 2003. V. 13. P. 562–568.
  33. Liakopoulos D., Kusch J., Grava S., et al. // Cell. 2003. V. 112. P. 561–574.
  34. Kaltschmidt J.A., Davidson C.M., Brown N.H., Brand A.H. // Nature Cell Biol. 2000. V.2. P. 7–12.
  35. Haydar T.F., Ang E. Jr., Rakic P. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 2890–2895.
  36. Yamashita Y.M., Jones D.L., Fuller M.T. // Science 2003. V. 301. P. 1547–1550.
  37. Seery J.P., Watt F.M. // Curr. Biol. 2000. V. 10. P. 1447–1450.
  38. Lechler T., Fuchs E. // Nature. 2005. V. 437. P. 275–280.
  39. Clayton E., Doupe D.P., Klein A.M. et al. // Nature. 2007. V. 446. P. 185–189.
  40. Lamprecht J. // Cell Tissue Kinet. 1990. V. 23. P. 203–216.
  41. Huang S., Law P., Francis K. et al. // Blood. 1999. V. 94. P. 2595–2604.
  42. Chenn A., McConnell S.K. // Cell. 1995. V. 82. P. 631–641.
  43. Shen Q., Zhong W., Jan Y.N., Temple S. // Development. 2002. V. 129. P. 4843–4853.
  44. Petersen P.H., Zou K., Hwang J.K. et al. // Nature. 2002. V. 419. P. 929–934.
  45. Cayouette M., Raff M., Koster R.W., Fraser S.E. // Nature Neurosci. 2002. V. 5. P. 1265– 1269.
  46. Shinin V., Gayraud-Morel B., Gomes D., Tajbakhash S. // Nature Cell Biol. 2006. V. 8. P. 677–687.
  47. Wakamatsu Y., Maynard T.M., Jones S.U., Weston J.A. // Neuron 1999. V. 23. P. 71–81.
  48. Verdi J.M., Bashirullah A., Goldhawk D.E. et al. // Proc. Natl. Acad. Sci. USA. 1999. V.P. 10472–10476.
  49. Yu F., Morin X., Kaushik R. et al. // J. Cell Sci. 2003. V. 116. P. 887–896.
  50. Du Q., Stukenberg P.T., Macara I.G. // Nat. Cell Biol. 2001. V. 12. P. 1069–1075.
  51. Žigman M., Cayouette M., Charalambous C. et al.// Neuron. 2005. V. 48. P. 539–545.
  52. Rando T.A. // Nature. 2006. V. 441. P. 1080–1086.
  53. Harrison D.E. // Proc. Natl. Acad. Sci. USA. 1973. V. 70. P. 3184–3188.
  54. Ogden D.A., Micklem H.S. // Transplantation. 1976. 22:287–293.
  55. Harrison D.E. // J. Exp. Med. 1983. V. 157. P. 1496–1504.
  56. Ross E.A., Anderson N., Micklem H.S. // J. Exp. Med. 1982. V. 155. P. 432–444.
  57. Iscove N.N., Nawa K. // Curr. Biol. 1997. V. 7. P. 805–808.
  58. Morrison S.J., Wandycz A.M.K. Akashi A. et al. // Nat. Med. 1996. V. 2. P. 1011–1016.
  59. Liang Y., Van Zant G., Szilvassy S.J. // Blood. 2005. V. 106. P. 1479–1487.
  60. Cho R.H., Sieburg H.B., Muller-Sieburg C.E. // Blood. 2008. V. 111. P. 5553–5561.
  61. Rossi D.J., Bryder D., Seita J. et al. // Nature. 2007. V. 447. P. 725–729.
  62. Geiger H., True J.M., de Haan G., Van Zant G. // Blood. 2001. V. 98. P. 2966–2972.
  63. Conboy I.M., Conboy M.J., Wagers A.J. et al. // Nature. 2005. V. 433. P. 760–764.
  64. Van Zant G., Scott-Micus K., Thompson B.P. et al. // Exp. Hematol. 1992. V. 20. P.470–475.
  65. Jones D.L. // Stem. Cell Rev. 2007. V. 3. P. 192–200.
  66. Zeng X. // Stem. Cell Rev. 2007. V. 3. P. 270–279.
  67. Stern M.M., Bickenbach J.R. // Aging Cell. 2007. V. 64. P. 439–452.
  68. Kopito R.R. // Trends Cell Biol. 2000. V. 10. P. 524–530.
  69. Johnston J.A., Ward C.W., Kopito R.R. // J. Cell Biol. 1998. V. 143. P. 1883–1898.
  70. Terman A. // Redox Rep. 2001. V. 6. P. 15–26.
  71. Bucciantini M., Giannoni E., Chiti F. et al. // Nature. 2002. V. 416. P. 507–511.
  72. Moore D.J., Dawson V.L., Dawson T.M. // Molecular Med. 2003. V. 4. P. 95–108.
  73. Arrasate M., Mitra S., Schweitzer E.S. et al. // Nature. 2004. V. 431. P. 805–810.
  74. Nystrom T. // EMBO J. 2005. V. 24. P. 1311–1317.
  75. Rujano M.A., Bosveld F., Salomons F.A. et al. // PloS Biol. 2006. V. 4. Issue12: e417.
  76. Rebollo E., Sampaio P., Januschke J. et al. // Developmental Cell. 2007. V. 12. P.467–474.
  77. Yamashita Y.M., Jones D.L., Fuller M.T. // Science. 2003. V. 301. P. 1547–1550.
  78. Fuentealba L.C., Eivers E., Geissert D. et al. // Proc. Nat. Acad. Sci. USA. 2008. V. 105. P. 7732–7737.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Terskikh V.V., Vorotelyak Y.A., Vasiliev A.V., 2009

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах