Computer Modeling of the Structure and Spectra of Fluorescent Proteins

Обложка

Цитировать

Полный текст

Аннотация

Fluorescent proteins from the family of green fluorescent proteins are intensively used as biomarkers in living systems. The chromophore group based on the hydroxybenzylidene-imidazoline molecule, which is formed in nature from three amino-acid residues inside the protein globule and well shielded from external media, is responsible for light absorption and fluorescence. Along with the intense experimental studies of the properties of fluorescent proteins and their chromophores by biochemical, X-ray, and spectroscopic tools, in recent years, computer modeling has been used to characterize their properties and spectra. We present in this review the most interesting results of the molecular modeling of the structural parameters and optical and vibrational spectra of the chromophorecontaining domains of fluorescent proteins by methods of quantum chemistry, molecular dynamics, and combined quantum-mechanical–molecular-mechanical approaches. The main emphasis is on the correlation of theoretical and experimental data and on the predictive power of modeling, which may be useful for creating new, efficient biomarkers.

Полный текст

The discovery and use of colored proteins from the family of the green fluorescent protein [1–7] stimulated an avalanchelike growth of interest in these amazing species. Their practical value is explained by their ability to label cell clones with colored proteins and then literally trace the inner cell events. Biotechnology perspectives are promising because of multicolor labeling, in particular, the ability to observe interprotein interactions in living systems. These proteins are well characterized in crystallography studies. The β-sheets form the walls of the can (Fig.1) which efficiently shield the chromophore from the external media. The latter is represented by the hydroxybenzylidene-imidazoline molecule (Fig.2), which is formed in nature from three amino-acid residues inside the protein globule. The photophysical properties of fluorescent proteins are explained by transformations occurring with this chromophore group inside the macromolecule upon light illumination at certain wavelengths. Researchers from different fields concentrate on studies of all the aspects of the structure and mechanism of fluorescent proteins. In this review, we primarily analyze works on the computer modeling of the structure and spectra of these species. Using modern tools of molecular modeling [8] may provide considerable support to experimental studies, allowing one to save time and resources for a comprehensive examination of the processes occurring in such complex molecular systems. Obviously, a description of the transitions between the electronic states of chromophore molecules responsible for light absorption and emission requires the use of the quantum theory; correspondingly, quantum chemistry is an appropriate modeling tool. The conformational states of the protein macromolecule and the structure of the chromophorecontaining domain are also important for the properties of fluorescent proteins, thus requesting the application of molecular mechanics and molecular dynamics methods. To employ all these approaches, substantial computer resources, as well as efficient numerical algorithms and computer programs, are necessary. Quantum chemistry models are based on a nuclear-electron picture of a molecular system that requires a numerical solution of the Schroedinger equation by using approximations of different accuracy levels. Presently, a developed hierarchy of quantum chemistry approaches is known, each of which is oriented toward performing certain tasks. In particular, for calculating structural parameters, i.e., geometrical configurations corresponding to the minimum energy points on the ground electronic state potential energy surface for a given model molecular system, as well as to calculate vibrational spectra, electronic density functional theory approaches are often operative.
×

Список литературы

  1. Tsien R. Y. // Ann. Rev. Biochem. 1998. V. 67. P. 509--544
  2. Zimmer M. // Chem. Rev. 2002. V. 102. P. 759--781
  3. Labas Yu. A., Gordeeva A.V., Fradkov A.F. // Priroda (Russian). 2003. -3. P. 33--43
  4. Schmid J. A., Neumeier H. // ChemBioChem. 2005. V. 6. P. 1–9
  5. Remington S. J. // Curr. Opin. Struct. Biol. 2006. V. 16. P. 714–721
  6. Wachter R. M. // Photochem. Photobiol. 2006. V. 82. P. 339–344
  7. Tonge P. J., Meech, S. R. // J. Photochem. Photobiol. A: Chemistry. 2009, V.205. P. 1-11.
  8. Nemukhin A. V. //Soros Educational J. (Russian). 1998. -. P. 48--52
  9. Robb M. A., Garavelli M., Olivucci M., Bernardi F. // in Rev. Comput. Chem., Eds. Lipkowitz K. B., Boyd. D. B. Wiley-VCH Publishers. New York. 2000. V. 15. P. 87--146
  10. Warshel A., Levitt M. // J. Mol. Biol. 1976. V. 109. P. 227--249
  11. Reuter N., Lin H., Thiel W. // J. Phys. Chem. B. 2002. V. 106. P. 6310--6321
  12. Helms V., Straatsma T. P., McCammon J. A. // J. Phys. Chem. B. 1999. V. 103. P. 3263--3269
  13. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. // Nucl. Acids Res. 2000. V. 28. P. 235--242
  14. Chattoraj M., King B. A., Bublitz G. U., Boxer S. G. // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 8362–8367
  15. Warren A., Zimmer M. //J. Molec. Graphics Model. 2001. V. 19. P. 297-303
  16. Lill M. A., Helms V. // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 2778–2781
  17. Patnaik S. S., Trohalaki S., Pachter R. // Biopolymers. 2004. V. 75. P. 441–452
  18. Agmon N. // Biophys. J. 2005. V. 88. P. 2452–2461
  19. Leiderman P., Huppert D., Agmon N. // Biophys. J. 2006. V. 90. P. 1009–1018
  20. Baffour-Awuah N. Y. A., Zimmer M. // Chem. Phys. 2004. V. 303. P. 7–11
  21. Maddalo S. L., Zimmer M. // Photochem. Photobiol. 2006. V. 82. P. 367–372
  22. Megley C. M., Dickson L. A., Maddalo S. L., Chandler G. J., Zimmer M. // J. Phys. Chem. B. 2009. V. 113. P. 302–308
  23. Andresen M., Wahl M. C., Stiel A. C., Grater F., Schafer L. V., Trowitzsch S., Weber G., Eggeling C., Grubmuller H., Hell S. W., Jakobs S. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 13070–13074
  24. Nifosi R., Tozzini V. // Chem. Phys. 2006. V. 323. P. 358–368
  25. Vallverdu G., Demachy I., Ridard J., Levy B. // J. Molec. Struct. THEOCHEM. 2009. V. 898. P. 73–81
  26. Lukyanov K. A., Fradkov A. F., Gurskaya N. G., Matz M. V., Labas Y. A., Savitsky A. P., Markelov M. L., Zaraisky A. G., Zhao X. N., Fang Y., Tan W. Y., Lukyanov S. A. // J. Biol. Chem. 2000. V. 275. P. 25879--25882
  27. Schafer L.V., Groenhof G., Klingen A. R., Ullmann G. M., Boggio-Pasqua M., Robb M. A., Grubmuller H. // Angew. Chemie Int. Ed. 2007. V. 46: P. 530–536
  28. Moors S. L. C., Michielssens S., Flors C., Dedecker P., Hofkens J., Ceulemans A. // J. Chem. Theory Comput. 2008. V. 4. P. 1012–1020
  29. Habuchi S., Ando R., Dedecker P., Verheijen W., Mizuno H., Miyawaki A., Hofkens J. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 9511–9516
  30. Khrameeva E. E., Drutsa V. L., Vrzheshch E. P., Dmitrienko D. V., Vrzheshch P. V. // Biochemistry (Mosc). 2008. V. 73. P. 1085-95
  31. Voityuk A. A., Michel-Beyerle M. E., Rosch N. //Chem. Phys. Lett. 1997. V. 272. P.162–167
  32. Voityuk A. A., Michel-Beyerle M. E., Rosch N. //Chem. Phys. 1998. V. 231. P. 13–25
  33. Weber W., Helms V., McCammon J. A., Langhoff P. W. // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 6177–6182
  34. Helms V., Winstead C., Langhoff P. W. //J. Molec. Struct. THEOCHEM. 2000. V. 506. P. 179-189
  35. Nemukhin A. V., Topol I. A., Burt S. K. // J. Chem. Theor. Comput. 2006. V.2. P. 292-299
  36. Helms V. // Curr. Opin. Struct. Biol. 2002. V. 12. P. 169-175
  37. Epifanovsky E., Polyakov I., Grigorenko B., Nemukhin A., Krylov A. I. // J. Chem. Theor. Comput. 2009. V. 5. P. 1895–1906
  38. Sinicropi A., Andruniow T., De Vico L., Ferre N., Olivucci M. // Pure Appl. Chem. 2005. V. 77. P. 977–993
  39. Wanko M., Hoffmann M., Frauenheim T., Elstner M. // J. Comput. Aided Mol. Des. 2006. V. 20. P. 511–518
  40. Voityuk A. A., Michel-Beyerle M. E., Rosch N. //Chem. Phys. Lett. 1998. V. 296. P.269–276
  41. Gross L. A., Baird G. S., Hoffman R. C., Baldridge K. K., Tsien R. Y. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 11990–11995
  42. Wan S., Liu S., Zhao G., Chen M., Han K., Sun M. //Biophys. Chem. 2007. V. 129. P.218-223
  43. Collins J. R., Topol I. A., Nemukhin A. V., Savitsky A. P. //Proc. SPIE. 2009. V. 7191. P.71912
  44. Zerner M. C. //Rev. Comput. Chem. Ed. Lipkowitz K.B. and Boyd D.B. 1991. Vol.2 (VCPublishing, New York), P. 313-366
  45. Dreuw A., Head-Gordon M. // J. Am. Chem. Soc. 2004. V. 126. P. 4007-4016
  46. Matz M. V., Fradkov A. F., Labas Y. A., Savitsky A. P., Zaraisky A. G., Markelov M. L., Lukyanov S. A. // Nature Biotechnol. 1999. V. 17. P. 969–973
  47. Nielsen S. B., Lapierre A., Andersen J. U., Pedersen U. V., Tomita S., Andersen L. H. // Phys. Rev. Lett. 2001. V.87. P. 228102
  48. Andersen L. H., Lapierre A., Nielsen S. B., Nielsen I. B., Pedersen S. U., Pedersen U. V., Tomita S. // Eur. Phys. J. D. 2002. V. 20. P. 597-600
  49. Boye S., Nielsen S. B., Krogh H., Nielsen I. B., Pedersen U. V., Bell A. F., He X., Tonge P. J., Andersen L. H. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 3021–3026
  50. Marques M. A. L., Lopez X., Varsano D., Castro A., Rubio, A. // Phys. ReV. Lett. 2003, V. 90. P. 258101
  51. Lopez X., Marques M. A. L., Castro A., Rubio A. // J. Am. Chem. Soc. 2005. V. 127. P. 12329-12337
  52. Xie D., Zeng X. // J. Comp. Chem. 2005. V. 26. P. 1487-1496
  53. Sun M. // Int. J. Quant. Chem. 2006. V. 106. P. 1020–1026
  54. Amat P., Granucci G., Buda F., Persico M., Tozzini V. // J. Phys. Chem. B. 2006. V.110. P. 9348-9353
  55. Timerghazin Q. K., Carlson H. J., Liang C., Campbell R. E., Brown A. // J. Phys. Chem. B. 2008. V. 112. P. 2533-2541
  56. Das A. K., Hasegawa J.-Y., Miyahara T., Ehara M., Nakatsuji H. // J. Comput. Chem. 2003. V. 24. P. 1421–1431
  57. Martin M. E., Negri F., Olivucci M. // J. Am. Chem. Soc. 2004. V. 126. P. 5452–5464
  58. Bravaya K. B., Bochenkova A. V., Granovsky A. A., Nemukhin A. V. // Russ. J. Phys. Chem. B. 2008. V. 2. P. 671-675
  59. Bravaya K. B., Bochenkova A. V., Granovsky A. A., Savitsky A. P., Nemukhin A. V. // J. Phys. Chem. A. 2008. V. 112. P. 8804–8810
  60. Olsen S., Smith S. C. //J. Am. Chem. Soc. 2007. V. 129. P. 2054–2065
  61. Olsen S., Smith S. C. //J. Am. Chem. Soc. 2008. V. 130. P. 8677–8689
  62. Olsen S., McKenzie R. H. //J. Chem. Phys. 2009. V.130. P. 184302
  63. Laino T., Nifosi R., Tozzini V. // Chem. Phys. 2004. V. 298. P. 17–28
  64. Zhang R. B., Nguyen M. T., Ceulemans A. // Chem. Phys. Lett. 2005. V. 404. P. 250–256
  65. Tozzini V., Nifosi R. // J. Phys. Chem. B. 2001. V. 105. P. 5797-5803
  66. Tozzini V., Bizarri A. R., Pellegrini V. , Nifosi R., Giannozzi P., Iuliano A., Cannistraro S., Beltram F. // Chem. Phys. 2003. V. 287. P. 33–42
  67. Tozzini V., Giannozzi P. // ChemPhysChem. 2005. V. 6. P. 1–4
  68. Yoo H.-Y., Boatz J. A., Helms V. J., Andrew McCammon J. A., Langhoff P. W. // J. Phys. Chem. B. 2001. V. 105. P. 2850-2857
  69. Altoe P., Bernardi F., Garavelli M., Orlandi G., Negri F. //J. Am. Chem. Soc. 2005. V. 127. P. 3952–3963
  70. Altoe P., Bernardi F., Conti I., Garavelli M., Negri F., Orlandi G. // Theor. Chem. Acc. 2007. V. 117. P. 1041–1059
  71. Voityuk A. A., Kummer A. D., Michel-Beyerle M. E., Rosch N. // Chem. Phys. 2001. V.269. P. 83-91
  72. Toniolo A., Olsen S., Manohar L., Martinez T. J. // Faraday Discus. 2004. V. 127. P.149–163
  73. Virshup A. M., Punwong C., Pogorelov T. V., Lindquist B. E., Ko C., Martinez T. D. // J. Phys. Chem. B. 2009. V. 113. P. 3280–3291
  74. Yan W., Zhang L., Xie D., Zeng J. // J. Phys. Chem. B. 2007. V. 111. P.14055-14063
  75. Voliani V., Bizzarri R., Nifosi R., Abbruzzetti S., Grandi E., Viappiani C., Beltram F. // J. Phys. Chem. B. 2008. V. 112. P.10714–10722
  76. Yampolsky I. V., Remington S. J., Martynov V. I., Potapov V. K., Lukyanov S., Lukyanov K. A. // Biochem. 2005. V. 44. P. 5788-5793
  77. Dong J., Abulwerdi F., Baldridge A., Kowalik J., Solntsev K. M., Tolbert L. M. // J. Am. Chem. Soc. 2008. V. 130. P. 14096-14098
  78. He X., Bell A. F., Tonge P. J. // FEBS Lett. 2003. V. 549. P. 35-38
  79. Polyakov I., Epifanovsky E., Grigorenko B., Krylov A. I., Nemukhin A. // J. Chem. Theor. Comput. 2009. V. 5. P. 1907–1914
  80. El Yazal J., Prendergast F. G., Shaw D. A., Pang Y.-P. // J. Am. Chem. Soc. 2000. V. 122. P. 11411--11415
  81. Scharnagl C., Raupp-Kossmann R. A. // J. Phys. Chem. B. 2004. V. 108. P. 477--489
  82. Nemukhin A. V., Topol I. A., Grigorenko B. L., Savitsky A. P., Collins J. R. // J. Mol. Struct. THEOCHEM. 2008. V. 863. P. 39–43
  83. Grigorenko B., Savitsky A., Topol I., Burt S., Nemukhin A. // Chem. Phys. Lett. 2006. V. 424. P. 184–188
  84. Grigorenko B., Savitsky A., Topol I., Burt S., Nemukhin A. // J. Phys. Chem. B. 2006. V. 110. P. 18635--18640
  85. Quillin M. L., Anstrom D. M., Shu X., O’Leary S., Kallio K., Chudakov D. M., Remington S. J. // Biochem. 2005. V. 44. P. 5774--5787
  86. Grigorenko B. L., Nemukhin A. V., Topol I. A., Burt S. K. // J. Phys. Chem. A. 2002. V. 106. P. 10663--10672
  87. Nemukhin A. V., Grigorenko B. L., Topol I. A., Burt S. K. // J. Comput. Chem. 2003. V. 24. P. 1410--1420
  88. Wilmann P. G., Petersen J., Devenish R. J., Prescott M., Rossjohn J. // J. Biol. Chem. 2005. V. 280. P. 2401-2404
  89. Chudakov D. M., Feofanov A. V., Mudrik N. N., Lukyanov S., Lukyanov K. // J. Biol. Chem. 2003. V. 278. P. 7215–7219
  90. Schuttrigkeit T. A., von Feilitzsch T., Kompa C. K., Lukyanov K. A., Savitsky A. P., Voityuk A. A., Michel-Beyerle M. E. // Chem. Phys. 2006. V. 323. P. 149–160
  91. Schafer L. V., Groenhof G., Boggio-Pasqua M., Robb M. A., Grubmüller H. //PLoS Comput. Biol. 2008. V. 4. P. e1000034
  92. Vendrell O., Gelabert R., Moreno M., Lluch J. M. // Chem. Phys. Lett. 2004. V. 396. P. 202–207
  93. Vendrell O., Gelabert R., Moreno M., Lluch J. M. // J. Am. Chem. Soc. 2006. V. 128. P. 3564–3574
  94. Vendrell O., Gelabert R., Moreno M., Lluch J. M. // J. Chem. Theor. Comput. 2008. V.4. P. 1138–1150
  95. Vendrell O., Gelabert R., Moreno M., Lluch J. M. // J. Phys. Chem. B. 2008. V. 112. P. 13443–13452
  96. Vendrell O., Gelabert R., Moreno M., Lluch J. M. // J. Phys. Chem. B. 2008. V. 112. P. 5500–5511
  97. Sinicropi A., Andruniow T., Ferre N., Basosi R., Olivucci M. // J. Am. Chem. Soc. 2005. V. 127. P. 11534–11535
  98. Hasegawa J., Fujimoto K., Swerts B., Miyahara T., Nakatsuji H. //J. Comput. Chem. 2007. V. 28. P. 2443–2452
  99. Mochizuki Y., Nakano T., Amari S., Ishikawa T. // Chem. Phys. Lett. 2007. V. 433. P. 360–367
  100. Taguchi N., Mochizuki Y., Nakano T., Amari S., Fukuzawa K., Ishikawa T., Sakurai M., Tanaka S. //J. Phys. Chem. B. 2009. V. 113. P. 1153–1161
  101. Olsen S., Manohar L., Martinez T. J. //Biophys. J. 2002. V. 82. P. 359A–459A
  102. Wang S. F., Smith S. C. //Phys. Chem. Chem. Phys. 2007. V. 9. P. 452–458
  103. Zhang H., Smith S. C. // J. Theor. Comput. Chem. 2007. V. 6 P. 789–802
  104. Lukyanov K. A., Chudakov D. M., Lukyanov S., Verkhusha V. V. // Nat. Rev. Mol. Cell Biol. 2005. V. 6. P. 885-891
  105. Baskin I. I., Palyulin V. A., Zefirov N. S. // Russ. Chem. Rev. 2009. V. 78. P. 539--557.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Nemukhin A.V., Grigorenko B.L., Savitsky A.P., 2009

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах