Assessment of Formate Dehydrogenase Stress Stability in vivo using Inactivation by Hydrogen Peroxide

Обложка

Цитировать

Полный текст

Аннотация

Kinetic studies on hydrogen peroxide-induced inactivation of mutant formate dehydrogenase from Pseudomonas sp. 101 (PseFDH Cys255Ala) suggest a simple bimolecular mechanism for enzyme reaction with the inactivation agent. In the excess of hydrogen peroxide, the decrease in enzyme activity follows first-order kinetics. Therefore, the first-order effective inactivation kinetic constants determined for various FDH forms at a constant H 2O 2 concentration can be used as a quantitative measure of the enzyme stability. It was shown that two cysteine residues located in the active site formate- and coenzyme-binding domains (Cysl45 and Cys255, respectively) make similar contributions to the enzyme stability, while the contribution of Cys354 is insignificant. The inactivation kinetics of wild-type PseFDH, mutant PseFDH Cysl45Ser/Cys255Ala, and FDH produced under stress conditions by bacterium Staphylococcus aureus, higher plants Arabidopsis thaliana, and soya Glycine max, was studied. It was found that the stress-induced FDHs are at least 20 times more stable than the nonstress-induced PseFDH from Pseudomonas sp. 101 grown on methanol.

Полный текст

Assessment of Formate Dehydrogenase Stress Stability in vivo using Inactivation by Hydrogen Peroxide
×

Об авторах

S S Savin

V I Tishkov

Email: vitishkov@gmail.com

Список литературы

  1. Tishkov V.I., Popov V.O. // Biomol. Eng. 2006. V.23. P. 89.
  2. Colas des Francs-Small C., Ambard-Bretteville F., Small I.D., Remy R. // Plant Physiol 1993. V.102. P.1171.
  3. Vinals C., Depiereux E., Feytmans E. // Biochem. Biophys. Res. Commun. 1993. V. 192. P. 182.
  4. Hummel W., Kula M.R. // Eur. J. Biochem. 1989. V. 184. P. 1.
  5. Hummel W. // Trends Biotechnol 1999. V. 17. P. 487.
  6. Liese A., Filho M.V. // Curr. Opin. Biotechnol 1999. V. 10. P. 595.
  7. Tishkov V.I., Popov V.O. // Biochemistry (Moscow). 2004. V. 69. P. 1252.
  8. Bommarius A.S., Schwarm M., Stingl K., Kottenhahn M., Huthmacher K., Drauz, K. // Tetrahedron-Asymmetry. 1995. V. 6. P. 2851.
  9. Sadykhov E., Serov A., Voinova N., Uglanova S., Petrov A., et al. // Appl. Biochem. Microbiol 2006. V.42. P.236.
  10. Tishkov V.I., Galkin A.G., Marchenko G.N., Egorova O.A., Sheluho D.V., et al. // Biochem. Biophys. Res. Commun. 1993. V.192. P.976.
  11. Odintzeva E.R., Popova A.S., Rojkova A.M., Tishkov V.I. // Moscow Univ. Chem. Bull. 2002. V. 43. P. 356.
  12. Yamamoto H., Mitsuhashi K., Kimoto N., Kobayashi Y., Esaki N. // Appl. Microbiol Biotechnol 2004.
  13. Slusarczyk H., Felber S., Kula M.R., Pohl M. // Eur. J. Biochem. 2000. V.267. P.1280.
  14. Colas des Francs-Small C., Ambard-Bretteville F., Darpas A., Sallantin M., Huet J.C., et al. // Plant Physiol. 1992. V. 98. P. 273.
  15. Resch A., Rosenstein R., Nerz C., Gotz F. // Appl. Environ. Microbiol 2005. V. 71. P. 2663.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Savin S.S., Tishkov V.I., 2010

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах