Phage Display on the Base of Filamentous Bacteriophages: Application for Recombinant Antibodies Selection

Cover Page

Cite item

Abstract

The display of peptides and proteins on the surface of filamentous bacteriophage is a powerful methodology for selection of peptides and protein domains, including antibodies. An advantage of this methodology is the direct physical link between the phenotype and the genotype, as an analyzed polypeptide and its encoding DNA fragment exist in one phage particle. Development of phage display antibody libraries provides repertoires of phage particles exposing antibody fragments of great diversity. The biopanning procedure facilitates selection of antibodies with high affinity and specificity for almost any target. This review is an introduction to phage display methodology. It presents recombinant antibodies display in more details:, construction of phage libraries of antibody fragments and different strategies for the biopanning procedure.

Full Text

In the mid-eighties, a novel molecular-biological methodology which revolutionized the engineering of peptides and proteins was developed. This approach is known as phage display. It is based on the experiments of George Smith performed in the mid-80s [1]. Initially, Smith demonstrated that an exogenous protein can be expressed on the surface of the filamentous M13 phage. This was achieved by inserting the gene that encoded a part of the EcoRI endonuclease into the ORF of the phage’s minor capsid protein pIII. Using polyclonal antibodies specific to the EcoRI endonuclease, Smith demonstrated the ability of phages carrying the chimeric EcoRI–pIII protein to specifically bind the appropriate antibodies. Furthermore, it was shown that phages with this insertion could be selected from a mixture containing wild-type phages by affine enrichment using polyclonal antibodies against the EcoRI endonuclease. These experiments led to two important conclusions: first, using DNA-recombination methods, it is possible to create phage populations of different representativity (106 – 1011 variants), wherein each individual phage displays a random peptide on its surface. Such populations were named “combinatorial phage libraries.” Second, physical link between the analyzed polypeptide and the gene encoding it in the same phage particle provides the opportunity for easy selection of the needed variants and their identification. G. Smith termed the result of expression of exogenous oligo- and polypeptides on the surface of viable filamentous phages “phage display.” Furthermore, a method of affinity enreichment named “biopanning” was developed. According to this method, phages bearing inserted sequences with affinity to specific ligands can be selected from a phage library. The term “biopanning” was suggested in 1988 [2].
×

About the authors

N V Tikunova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Science

Email: tikunova@niboch.nsc.ru

V V Morozova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Science

References

  1. Smith G. // Science. 1985. V. 228. P. 1315–1317.
  2. Parmley S., Smith G. // Gene. 1988. V. 73. P. 305–318.
  3. Ilyichev A., Minenkova O., Tat’kov S., et al.. // Doklady AN USSR (rus). 1989. V. 307. P. 481–483.
  4. Minenkova O., Ilyichev A.., Kishchenko G. // Gene. 1993. V. 128. P. 85–88.
  5. MacCafferty J., Griffiths A., Winter G., et al. // Nature. 1990. V. 348. P. 552–554.
  6. Van Wezenbeek P., Huloenmakers J.G. // Gene. 1980. V. 11. P. 129–148.
  7. Beck E., Zink B. // Gene. 1981. V. 16. P. 35–58.
  8. Maneewannakul K., Maneewannakul S., Ippen-Ihler K. // J. Bacteriol. 1993. V. 175. P. 1384–1391.
  9. Model P., Russel M. The bacteriophages. V. 2. N.Y.: Plenum, 1988. 456 p.
  10. Kay B., Winter G., McCafferty J. Phage display of peptides and proteins: a laboratory manual. N.Y.: Academic press. 1996. 306 р.
  11. Mead D., Kemper B. // Biotechnology. 1988. V. 10. P. 85–102.
  12. Mullen L., Nair S., Ward J., et al. // TREN DS in Microbiol. 2006. V. 14. P. 141–147.
  13. Griffiths A., Duncan A. // Curr. Opin. Biotech. 1998. V. 9. P. 102–108.
  14. Deev S., Lebedenko E., // Аcta Naturae. 2009. V.1. P. 32–50.
  15. Azzazy H., Highsmith W. // Clin. Biochem. 2 15. 002. V. 35. P. 425–445.
  16. Batanova T., Ulitin A., Morozova V., et al. // Mol. Genet. Microbiol. Virusol. (rus). 2006. V.3. P. 35–41.
  17. Blazek D., Celer V.// Folia Microbiol. 2003 V. 48. P.687–698.
  18. Chingwei V., Blazek D., Celer V., et al. // J. Virol. Methods. 2004. V. 115. P. 83–82.
  19. Kim S., Jang M., Stapleton J., et al. // Virology. 2004. V. 318. P. 598–607.
  20. Nagano K., Imai S., Mukai Y., et al. // Pharmazie. 2009. V. 64. P. 238–241.
  21. Barbas C. // Curr. Opin. Biotechnol. 1993. V. 4. P. 526–530.
  22. Zahra D., Vancov T., Dunn J., et al. // Gene. 1999. V. 227. P. 49–54.
  23. Sheets M., Amersdorfer P., Finnern R., et al. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 6157–6162.
  24. de Haard H., van Neer N., Reurs A., et al. // J. Biol. Chem. 1999. V. 274. P. 18218–18230.
  25. Vaughan T., Williams A., Pritchard K., et al. // Nat. Biotechnol. 1996. V. 14. P. 309–314.
  26. Kashyap A., Steel J., Oner A., et al. // Proc Natl Acad Sci USA. 2008. V.105. P. 5986–5991.
  27. Yamashita M., Katakura Y., Shim S., et al. // Cytotechnology. 2002. V. 40. P.161–165.
  28. Yamashita M., Katakura Y., Shirahata S. // Cytotechnology. 2007. V. 55. P. 55–60.
  29. Ulitin A., Kapralova M., Laman A., et al. // Doklady AN (rus). 2005. V. 405. P. 1–4.
  30. Marks J., Hoogenboom H., Bonnert T., et al. // J. Mol. Biol. 1991. V. 222. P. 581–597.
  31. Johnson G., Wu T. // Nucleic Acids Res. 2001. V. 29. P. 205–206.
  32. Griffiths A., Malmqvist M., Marks J., et al. // EMBO J. 1993. V. 12. P. 725–734.
  33. Dorsam H., Rohrbach P., Kurscher T., et al. // FEBS Lett. 1997. V. 1. P. 7–13.
  34. Hoogenboom H., Lutgerink J., Pelsers M., et al. // Eur. J. Biochem. 1999. V. 260. P. 774–784.
  35. Foy B., Killeen G., Frohn R., et al. // J. Immunol. Methods. 2002. V. 261. P. 73–83.
  36. Cardoso D., Nato F., England P., et al. // Scand. J Immunol. 2000. V. 51. P. 337–344.
  37. Barbas C., Bain J., Hoekstra D., et al. // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 4445–4457.
  38. Winter G., Griffiths A., Hawkins R., et al. // Annu. Rev. Immunol. 1994. V. 12. P. 433–455.
  39. Xu J., Davis M. // Immunity. 2000. V. 13. P. 37–45.
  40. Lee C., Sidhu S., Fuh G. // J. Immunol. Meth. 2004. V. 284. P. 119–132.
  41. Tomlinson I., Walter G., Marks J., et al. // J. Mol. Biol. 1992. V. 227. P. 776–798.
  42. Nissim A., Hoogenboom H., Tomlinson I., et al. // EMBO J. 1994. V. 13. P. 692–698.
  43. Griffiths A., Williams S., Hartley O., et al. // EMBO J. 1994. V. 13. P. 3245–3260.
  44. Krebs B., Griffin H., Winter G., et al. // J Biol Chem. 1998. V. 273. P. 2858–2865.
  45. Tikunova N., Morozova V., Batanova T., et al. // Hum. Antibodies. 2001. V. 10. P. 95–99.
  46. Tikunova N., Batanova T., Chepurnov A. // Vopr. Virusol. (rus) 2005. V. 50. P. 25–29.
  47. Reshetnyak A., Armentano M., Ponomarenko N., et al. // J Am. Chem. Soc. 2007. V. 129. P. 16175–16182.
  48. Morozova V., Tikunova N., Batanova T., et al. // Vestnik RAMN (rus). 2004. V. 8. P. 22–27.
  49. de Kruif J., Boel E., Logtenberg T. // J. Mol. Biol. 1995. V. 248. P. 97–105.
  50. Knappik A., Ge L., Honegger A., et al. // J. Mol. Biol. 2000. V. 296. P. 57–86.
  51. Rothe C., Urlinger S. // J. Mol. Biol. 2008 V. 376. P.1182–1200.
  52. Carlsson R., Soderlind E. // Expert. Rev. Mol. Diagn. 2001. V. 1. P. 102–108.
  53. Gavilondo J., Larrick J. // Biotechniques. 2000. V. 29. P. 128–138.
  54. Burton D., Barbas C., Persson M., et al. // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 10134–10137.
  55. Barbas C., Crowe J., Cababa D., et al. // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 10164–10168.
  56. Zebedee S., Barbas C., Hom Y., et al. // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 3175–3179.
  57. Williamson R., Burioni R., Sanna P., et al. // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 4141–4145.
  58. Burioni R., Williamson R., Sanna P., et al. // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 355–359.
  59. Welschof M., Terness P., Kolbinger F., et al. // J. Immunol. Methods. 1995. V. 179. P. 203–214.
  60. Chapal N., Chardes T., Bresson D., et al. // Endocrinology. 2001. V. 142. P. 4740–4750.
  61. Raats J., Roeffen W., Litjens S., et al. // Eur. J. Cell.iol. 2003. V. 82. P. 131–141.
  62. Padavattan S., Flicker S., Scrimer T., et al. // J Immunol. 2009. V. 182. P. 2141–2151.
  63. Mao S., Gao C., Lo C., et al. // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 6953–6958.
  64. Kupsch J., Tidman N., Kang N., et al. // Clin. Cancer Res. 1999. V. 5. P. 925–931.
  65. Li J., Pereira S., Van Belle P., et al. // J. Immunol. 2001. V. 166. P. 432–438.
  66. Schmidt A., Muller D., Mersmann M., et al. // Eur. J. Biochem. 2001. V. 268. P. 1730– 1738.
  67. Dantas-Barbosa C., Brigido M., Maranhao A. // Genet. Mol. Res. 2005. V. 4. P. 126–140.
  68. Figini M., Obici L., Mezzanzanica D., et al. // Cancer Immunol. Immunother. 2009. V. 58. P. 531–546.
  69. Kausmally L., Waalen K., Lobersli I., et al. // J. Gen. Virol. 2004. V. 85. P. 3493–3500.
  70. Dubrovskaya V., Ulitin A., Laman A., et al. // Mol. Biol. (rus). 2007. V. 41. P. 173–185.
  71. Throsby M., van der Brink E., Jongeneelen M., et al. // PLoS One. 2008. V. 3. P. 3942.
  72. Houimel M., Dellagi K. // J Virol. Methods. 2009. V. 161. P. 205–215.
  73. Schmaljohn C., Cui Y., Kerby S., et al. // Virology. 1999. V. 258. P. 189–200.
  74. Yun T., Tikunova N., Shingarova L., et al. // Doklady RAN (rus). 2006. V. 407. P. 98–101.
  75. Cao J., Meng S., Li C., et al. // J. Med. Virol. 2008. V. 80. P. 1171–1180.
  76. Ohta A., Fujita A., Murayama T., et al. // Microbes Infect. 2009. V. 11. P. 1029–1036.
  77. Cai X., Garen A. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 6537–6541.
  78. Kang A., Barbas C., Janda K., et al. // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 4363–4366.
  79. Garrard L., Henner D. // Gene. 1993. V. 128. P. 103–109.
  80. Malmborg A., Duenas M., Ohlin M., et al. // J. Immunol. Methods. 1996. V. 198. P. 51–57.
  81. Sanna P., Williamson R., De Logu A., et al. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 6439–6443.
  82. Roberts B., Markland W., Siranosian K., et al. // Gene. 1992. V. 121. P. 9–15.
  83. Ward R.L., Clark M.A., Lee J., et al. // J. Immunol. Methods. 1996. V. 189. P. 73–82.
  84. Hawkins R., Russell S., Winter G. // J. Mol. Biol. 1992. V. 226. P. 889–896.
  85. Siegel D., Chang T., Russell S., et al. // J. Immunol. Methods. 1997. V. 206. P. 73–85.
  86. Nielsen U., Marks J. // Pharm. Sci. Technol. Today. 2000. V. 3. P. 282–291.
  87. Poul M. // Meth. Mol. Biol. 2009. V. 562. P. 155–163.
  88. Pasqualini R., Ruoslahti E. // Nature. 1996. V. 380. P. 364–366.
  89. Ayriss J., Valero R., Bradbury A., et al. // Methods mol. Biol. 2009. V. 525. P. 241–260.
  90. Bowley D., Jones T., Burton D., et al. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 1380–1385.
  91. Koefoed K., Farneas L., Wang M., et al. // J. Immunol. Methods. 2005. V. 297. P. 187–220.
  92. Ditzel H. // Methods Mol. Biol. 2009. V. 562. P. 37–43.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Tikunova N.V., Morozova V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies