Atomic Force Microscopy Study of the Arrangement and Mechanical Properties of Astrocytic Cytoskeleton in Growth Medium

Обложка

Цитировать

Полный текст

Аннотация

Astrocytes are quite interesting to study because of their role in the development of various neurodegenerative disorders. The present work describes an examination of the arrangement and mechanical properties of cytoskeleton of living astrocytes using atomic force microscopy (AFM). The experiments were performed with an organotypic culture of dorsal root ganglia (DRG) obtained from a chicken embryo. The cells were cultivated on a gelatinous substrate and showed strong adhesion. AFM allows one to observe cytoskeleton fibers, which are interpreted as actin filaments and microtubules. This assumption is supported by confocal microscopy fluorescence imaging of α-tubulin and fibrillar actin. Mapping of the local Young’s modulus of a living astrocyte showed that the stiff areas correspond to the sites where the cytoskeleton fibers are located. Thus, the data obtained indicate that AFM is a promising method to study neural cells cytoskeleton integrity and arrangement in in vitro models of neurodegeneration.

Полный текст

Atomic Force Microscopy Study of the Arrangement and Mechanical Properties of Astrocytic Cytoskeleton in Growth Medium
×

Список литературы

  1. Montgomery D. // Vet. Pathol. Online. 1994. V. 31. P. 145-167.
  2. Rodriguez J., Olabarria M., Chvatal A., Verkhratsky A. // Cell Death Differ. 2008. V. 16. P. 378-385.
  3. Goczalik I., Ulbricht E., Hollborn M., Raap M., Uhlmann S., Weick M., Pannicke T., Wiedemann P., Bringmann A., Reichenbach A., et al. // Investig. Ophthalmol. Vis. Sci. 2008. V. 49. P. 4578-4589.
  4. Maragakis N.J., Rothstein J.D. // Nat. Clin. Pract. Neurol. 2006. V. 2. P. 679-689.
  5. Dent E.W., Gertler F.B. // Neuron. 2003. V. 40. P. 209-227.
  6. Engel A., Muller D.J. // Nat. Struct. Mol. Biol. 2000. V. 7. P. 715-718.
  7. Graham H.K., Hodson N.W., Hoyland J.A., Millward-Sadler S.J., Garrod D., Scothern A., Griffiths C.E.M., Watson R.E.B., Cox T.R., Erler J.T. // Matrix Biol. 2010. V. 29. P. 254-260.
  8. Parpura V., Haydon P.G., Henderson E. // J. Cell Sci. 1993. V. 104. P. 427-432.
  9. Rotsch C., Radmacher M. // Biophys. J. 2000. V. 78. P. 520-535.
  10. Efremov Yu.M., Bagrov D.V., Dubrovinb E.V., Shaitan K.V., Yaminskii I.V. // Biofiz. 2011. V. 56. P. 288-303.
  11. Lu Y.B., Franze K., Seifert G., Steinhäuser C., Kirchhoff F., Wolburg H., Guck J., Janmey P., Wei E., Käs J., et al. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 17759-17764.
  12. Butt H.J., Cappella B., Kappl M. // Surf. Sci. Rep. 2005. V. 59. P. 1-152.
  13. Yamane Y., Shiga H., Haga H., Kawabata K., Abe K., Ito E. // J. Electron Microsc. 2000. V. 49. P. 463-471.
  14. Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I., Chizhikc S.A., Zhdanov R.I. // Micron. 2007. V. 38. P. 824-833.
  15. Kirmizis D., Logothetidis S. // Int. J. Nanomed. 2010. V. 5. P. 137-145.
  16. Moore K., Macsween M., Shoichet M. // Tissue Eng. 2006. V. 12. P. 267-278.
  17. Cramer L., Desai A. // Fluorescence Procedures for the Actin and Tubulin Cytoskeleton in Fixed Cells. Protocol at http://mitchison.med.harvard.edu/protocols/gen1.html.
  18. Braet F., Wisse E. // Meth. Mol. Biol. 2004. V. 242. P. 201-217.
  19. Santacroce M., Orsini F., Perego C., Lenardi C., Castagna M., Mari S.A., Sacchi V.F., Poletti G. // J. Microsc. 2006. V. 223. P. 57-65.
  20. Costa K.D. // Meth. Mol. Biol. 2006. V. 319. P. 331-361.
  21. Lebedev D.V., Chuklanov A.P., Buharev A.A., Drujinina O.S. // Tech. Phys. Let. 2009. V. 35. P. 54-61.
  22. Burnham N., Chen X., Hodges C., Matei G.A., Thoreson E.J., Roberts C.J., Davies M.C., Tendler S.J.B. // Nanotechnol. 2003. V. 14. P. 1-6.
  23. Sader J.E., Chon J.W.M., Mulvaney P. // Rev. Sci. Instrum. 1999. V. 70. P. 3967-3970.
  24. Sneddon I.N. // Int. J. Eng. Sci. 1965. V. 3. P. 47-57.
  25. McNally H.A., Borgens R.B. // J. Neurocytol. 2004. V. 33. P. 251-258.
  26. Yamada K.M., Spooner B.S., Wessells N.K. // Proc. Natl. Acad. Sci. USA. 1970. V. 66. P. 1206-1212.
  27. Yamane Y., Hatakeyama D., Tojima T., Kawabata K., Ushiki T., Ogura S., Abe K., Ito E. // Jpn. J. Appi. Phys. 1998. V. 37. P. 3849-3854.
  28. Firouzi M., Sabouni F., Ziaee A.A., Taghikhani M. // Iran. Biomed. J. 2004. V. 8. P. 101-105.
  29. Mustata M., Ritchie K., McNally H.A. // J. Neurosci. Meth. 2010. V. 186. P. 35-41.
  30. Franze K., Reichenbach A., Kas J. // Mechanosensitivity of the Nervous System/ Ed. Kamkin A., Kiseleva I. Dordrecht: Springer Netherlands; 2009. V. 2. P. 173-213.
  31. Braet F., Rotsch C., Wisse E., Radmacher M. // Appl. Phys. A: Materials Sci. & Processing. 1998. V. 66. P. 575-578.
  32. George E.B., Glass J.D., Griffin J.W. // J. Neurosci. 1995. V. 15. P. 6445-6452.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Efremov Y.M., Dzyubenko E.V., Bagrov D.V., Maksimov G.V., Shram S.I., Shaitan K.V., 2011

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах