A Vector Nanoplatform for the Bioimaging of Deep-Seated Tumors

Cover Page

Cite item

Abstract

Today, in preclinical studies, optical bioimaging based on luminescence and fluorescence is indispensable in studying the development of neoplastic transformations, the proliferative activity of the tumor, its metastatic potential, as well as the therapeutic effect of antitumor agents. In order to expand the capabilities of optical imaging, sensors based on the bioluminescence resonance energy transfer (BRET) mechanism and, therefore, independent of an external light source are being developed. A targeted nanoplatform based on HER2-specific liposomes whose internal environment contains a genetically encoded BRET sensor was developed in this study to visualize deep-seated tumors characterized by overexpression of human epidermal growth factor receptor type 2 (HER2). The BRET sensor is a hybrid protein consisting of the highly catalytic luciferase NanoLuc (an energy donor) and a LSSmKate1 red fluorescent protein with a large Stokes shift (an energy acceptor). During the bioimaging of disseminated intraperitoneal tumors formed by HER2-positive SKOV3.ip1cells of serous ovarian cystadenocarcinoma, it was shown that the developed system is applicable in detecting deep-seated tumors of a certain molecular profile. The developed system can become an efficient platform for optimizing preclinical studies of novel targeted drugs.

About the authors

E. I. Shramova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science

Email: gmb@ibch.ru
Russian Federation, Moscow, 117997

S. M. Deyev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science; Sechenov First Moscow State Medical University (Sechenov University); National Research Centre “Kurchatov Institute”

Email: gmb@ibch.ru
Russian Federation, Moscow, 117997; Moscow, 119991; Moscow, 123098

G. M. Proshkina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science

Author for correspondence.
Email: gmb@ibch.ru
Russian Federation, Moscow, 117997

References

  1. Bai J.W., Qiu S.Q., Zhang G.J. // Signal Transduct Target Ther. 2023. V. 8. № 1. P. 89.
  2. O’Farrell A.C., Shnyder S.D., Marston G., Coletta P.L., Gill J.H. // Br. J. Pharmacol. 2013. V. 169. № 4. P. 719–735.
  3. Hilderbrand S.A., Weissleder R. // Curr. Opin. Chem. Biol. 2010. V. 14. № 1. P. 71–79.
  4. Shramova E.I., Kotlyar A.B., Lebedenko E.N., Deyev S.M., Proshkina G.M. // Acta Naturae. 2020. V. 12. № 3. P. 102–113.
  5. Badr C.E. // Methods Mol. Biol. 2014. V. 1098. P. 1–18.
  6. Serkova N.J., Glunde K., Haney C.R., Farhoud M., De Lille A., Redente E.F., Simberg D., Westerly D.C., Griffin L., Mason R.P. // Cancer Res. 2021. V. 81. № 5. P. 1189–1200.
  7. Koessinger A.L., Koessinger D., Stevenson K., Cloix C., Mitchell L., Nixon C., Gomez-Roman N., Chalmers A.J., Norman J.C., Tait S.W.G. // Sci. Rep. 2020. V. 10. № 1. P. 15361.
  8. Shramova E.I., Chumakov S.P., Shipunova V.O., Ryabova A.V., Telegin G.B., Kabashin A.V., Deyev S.M., Proshkina G.M. // Light Sci. Appl. 2022. V. 11. № 1. P. 38.
  9. Ozawa T., Yoshimura H., Kim S.B. // Anal. Chem. 2013. V. 85. № 2. P. 590–609.
  10. Grebenil E.A., Kostyuk A.B., Deyev S.M. // Russ. Chem. Rev. 2016. V. 85. № 12. P. 1277–1296.
  11. Endo M., Ozawa T. // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6538.
  12. Főrster T. // Discuss. Faraday Soc. 1959. V. 27. P. 7–17.
  13. Yeh H.W., Karmach O., Ji A., Carter D., Martins-Green M.M., Ai H.W. // Nat. Methods. 2017. V. 14. № 10. P. 971–974.
  14. Eyre N.S., Aloia A.L., Joyce M.A., Chulanetra M., Tyrrell D.L., Beard M.R. // Virology. 2017. V. 507. P. 20–31.
  15. Iglesias P., Costoya J.A. // Biosens. Bioelectron. 2009. V. 24. № 10. P. 3126–3130.
  16. Branchini B.R., Rosenberg J.C., Ablamsky D.M., Taylor K.P., Southworth T.L., Linder S.J. // Anal. Biochem. 2011. V. 414. № 2. P. 239–245.
  17. Rumyantsev K.A., Turoverov K.K., Verkhusha V.V. // Sci. Rep. 2016. V. 6. P. 36588.
  18. Su Y., Walker J.R., Park Y., Smith T.P., Liu L.X., Hall M.P., Labanieh L., Hurst R., Wang D.C., Encell L.P., et al. // Nat. Methods. 2020. V. 17. № 8. P. 852–860.
  19. Nishihara R., Paulmurugan R., Nakajima T., Yamamoto E., Natarajan A., Afjei R., Hiruta Y., Iwasawa N., Nishiyama S., Citterio D., et al. // Theranostics. 2019. V. 9. № 9. P. 2646–2661.
  20. Ross J.S., Slodkowska E.A., Symmans W.F., Pusztai L., Ravdin P.M., Hortobagyi G.N. // Oncologist. 2009. V. 14. № 4. P. 320–368.
  21. Polanovski O.L., Lebedenko E.N., Deyev S.M. // Biochemistry (Moscow). 2012. V. 77. № 3. P. 227–245.
  22. Blumenthal G.M., Scher N.S., Cortazar P., Chattopadhyay S., Tang S., Song P., Liu Q., Ringgold K., Pilaro A.M., Tilley A., et al. // Clin. Cancer Res. 2013. V. 19. № 18. P. 4911–4916.
  23. Piatkevich K.D., Hulit J., Subach O.M., Wu B., Abdulla A., Segall J.E., Verkhusha V.V. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 12. P. 5369–5374.
  24. Steiner D., Forrer P., Pluckthun A. // J. Mol. Biol. 2008. V. 382. № 5. P. 121–127.
  25. Studier F.W. // Protein Expr. Purif. 2005. V. 41. № 1. P. 207–234.
  26. Dragulescu-Andrasi A., Chan C.T., De A., Massoud T.F., Gambhir S.S. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. № 29. P. 12060–12065.
  27. Shramova E.I., Filimonova V.P., Frolova A.Y., Pichkur E.B., Fedotov V.R., Konevega A.L., Deyev S.M., Proshkina G.M. // Eur. J. Pharm. Biopharm. 2023. V. 193. P. 208–217.
  28. Deyev S., Proshkina G., Baryshnikova O., Ryabova A., Avishai G., Katrivas L., Giannini C., Levi-Kalisman Y., Kotlyar A. // Eur. J. Pharm. Biopharm. 2018. V. 130. P. 296–305.
  29. Yu D., Wolf J.K., Scanlon M., Price J.E., Hung M.C. // Cancer Res. 1993. V. 53. № 4. P. 891–898.
  30. Hall M.P., Unch J., Binkowski B.F., Valley M.P., Butler B.L., Wood M.G., Otto P., Zimmerman K., Vidugiris G., Machleidt T., et al. // ACS Chem. Biol. 2012. V. 7. № 11. P. 1848–1857.
  31. Mahmood U. // IEEE Eng. Med. Biol. Mag. 2004. V. 23. № 4. P. 58–66.
  32. Carpenter S., Fehr M.J., Kraus G.A., Petrich J.W. // Proc. Natl. Acad. Sci. USA. 1994. V. 91. № 25. P. 12273–12277.
  33. Proshkina G.M., Shramova E.I., Shilova O.N., Ryabova A.V., Deyev S.M. // J. Photochem. Photobiol. B. 2018. V. 188. P. 107–115.
  34. Interlandi G., Wetzel S.K., Settanni G., Pluckthun A., Caflisch A. // J. Mol. Biol. 2008. V. 375. № 3. P. 837–854.
  35. Zahnd C., Kawe M., Stumpp M.T., de Pasquale C., Tamaskovic R., Nagy-Davidescu G., Dreier B., Schibli R., Binz H.K., Waibel R., et al. // Cancer Res. 2010. V. 70. № 4. P. 1595–1605.
  36. Suggitt M., Bibby M.C. // Clin. Cancer Res. 2005. V. 11. № 3. P. 971–981.
  37. Tolmachev V.M., Chernov M.I., Deyev S.M. // Russ. Chem. Rev. 2023. V. 91. № 3. P. RCR5034.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Shramova E.I., Deyev S.M., Proshkina G.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies