D-Arabinose Methabolism: Characterization of Bifunctional Arabinokinase/ Pyrophosphorylase of Leishmania major

Cover Page

Cite item


In this work we describe an unusual enzyme from Leishmania major (Arabinokinase/Pyrophosphorylase) that catalyzes the synthesis of GDP-Darabinopyranose (GDP-D-Ara p) via a D-arabinose-1-phosphate intermediate in the presence of ATP and GTP. Our data indicate GDP-D-Ara p transport in vivo by the LPG2 multispecific nucleotide sugar transporter into the Leishmania Golgi apparatus, in which it can be used by glycosyltransferases as a donor substrate for glycosylation.

Full Text

Introd uction It is known that both bacteria (Bacteriodes) and plants (Arabidopsis) can synthesize GDP-L-Fuc from L-fucose (L-Fuc) via intermediate L-fucose-1-phosphate using a bifunctional enzyme L-fucokinase/GDP-L-fucose pyrophosphorylase [3, 4]. Since D-Arap and L-Fuc are structurally similar, it makes sense to assume that biosynthesis of GDP-D-Arap in Leishmania can occur through a mechanism similar to that of GDPLFuc biosynthesis in other species. To check this hypothesis, the L.major genome was evaluated for open reading frames homologous to fucokinase and GDP-L-fucose pyrophosphorylase gene sequences. As a result, two near-identical genes (lmjF16.0440 and lmjF16.0480) were found as possessing high homology with the Bacteriodes fragilis fkp and Arabidopsis thaliana at1g01220 genes, both encoding L-fucokinase/GDPLfucose pyrophosphorylase [3, 4]. The open reading frames lmjF16.0440 and lmjF16.0480 correspond to putative polypeptides composed of 1,187 aminoacid residues with a calculated molecular mass of 126.5 kDa. The only difference (three aminoacid residues) between these two proteins is the segment 196–199, namely Phe-lnAsn-is in LmjF16.0480 and Leu-lnAspTyr in LmjF16.0440. The N-terminal sequences of these proteins contain a highly conserved segment Val100–Lys117 that closely resembles the conserved pyrophosphorylase motif Lys(X)2GlyXThrXMet(X)4Lys [5].

About the authors

N M Novozhilova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: nnovogilov@gmail.com

N V Bovin

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS


  1. McConville M.J., Turco S., Ferguson M., Sacks D. // EMBO J. 1992. V. 11. P. 3593–3600.
  2. Schneider P., McConville M., Ferguson M. // J Biol Chem. 1994. V. 269. P. 18332–18337.
  3. Coyne M., Reinap B., Lee M., Comstock L. // Science. 2005. V. 307. P. 1778–1781.
  4. Kotake T., Hojo S., Tajima N., Matsuoka K., Koyama T. et all // JBC. 2008. V. 283. P. 8125–8135.
  5. Peneff C., Ferrari P., Charrier V., Taburet Y., Monnier C. et all // EMBO J. 2001. V. 20. P. 6191–6202.
  6. Hanks S., Quinn A., Hunter T. // Science. 1988. V. 241. P. 42–52.
  7. Hong K., Ma D., Beverley S., Turco S. // Biochemistry. 2000. V. 39. P. 2013–2022.
  8. McConville M.J., Bacic A. // JBC. 1989. V. 264. P. 757–766.
  9. Spath G., Lye L., Segawa H., Sacks D., Turco S. et all // Science. 2003. V. 301. P. 1241–1243.
  10. Ilgoutz S.C., Zawadzki J.L., Ralton J.E., McConville M.J. // EMBO J. 1999. V. 18. P. 2746–2755.

Copyright (c) 2009 Novozhilova N.M., Bovin N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies