Atomic Force Microscopy Study of the Arrangement and Mechanical Properties of Astrocytic Cytoskeleton in Growth Medium

Cover Page

Cite item


Astrocytes are quite interesting to study because of their role in the development of various neurodegenerative disorders. The present work describes an examination of the arrangement and mechanical properties of cytoskeleton of living astrocytes using atomic force microscopy (AFM). The experiments were performed with an organotypic culture of dorsal root ganglia (DRG) obtained from a chicken embryo. The cells were cultivated on a gelatinous substrate and showed strong adhesion. AFM allows one to observe cytoskeleton fibers, which are interpreted as actin filaments and microtubules. This assumption is supported by confocal microscopy fluorescence imaging of α-tubulin and fibrillar actin. Mapping of the local Young’s modulus of a living astrocyte showed that the stiff areas correspond to the sites where the cytoskeleton fibers are located. Thus, the data obtained indicate that AFM is a promising method to study neural cells cytoskeleton integrity and arrangement in in vitro models of neurodegeneration.

Full Text

Atomic Force Microscopy Study of the Arrangement and Mechanical Properties of Astrocytic Cytoskeleton in Growth Medium

About the authors

Yu M Efremov

Lomonosov Moscow State University

Biological Department

E V Dzyubenko

Lomonosov Moscow State University; Institute of Molecular Genetics, Russian Academy of Sciences

Biological Department

D V Bagrov

Lomonosov Moscow State University

Biological Department

G V Maksimov

Lomonosov Moscow State University

Biological Department

S I Shram

Institute of Molecular Genetics, Russian Academy of Sciences

K V Shaitan

Lomonosov Moscow State University

Biological Department


  1. Montgomery D. // Vet. Pathol. Online. 1994. V. 31. P. 145-167.
  2. Rodriguez J., Olabarria M., Chvatal A., Verkhratsky A. // Cell Death Differ. 2008. V. 16. P. 378-385.
  3. Goczalik I., Ulbricht E., Hollborn M., Raap M., Uhlmann S., Weick M., Pannicke T., Wiedemann P., Bringmann A., Reichenbach A., et al. // Investig. Ophthalmol. Vis. Sci. 2008. V. 49. P. 4578-4589.
  4. Maragakis N.J., Rothstein J.D. // Nat. Clin. Pract. Neurol. 2006. V. 2. P. 679-689.
  5. Dent E.W., Gertler F.B. // Neuron. 2003. V. 40. P. 209-227.
  6. Engel A., Muller D.J. // Nat. Struct. Mol. Biol. 2000. V. 7. P. 715-718.
  7. Graham H.K., Hodson N.W., Hoyland J.A., Millward-Sadler S.J., Garrod D., Scothern A., Griffiths C.E.M., Watson R.E.B., Cox T.R., Erler J.T. // Matrix Biol. 2010. V. 29. P. 254-260.
  8. Parpura V., Haydon P.G., Henderson E. // J. Cell Sci. 1993. V. 104. P. 427-432.
  9. Rotsch C., Radmacher M. // Biophys. J. 2000. V. 78. P. 520-535.
  10. Efremov Yu.M., Bagrov D.V., Dubrovinb E.V., Shaitan K.V., Yaminskii I.V. // Biofiz. 2011. V. 56. P. 288-303.
  11. Lu Y.B., Franze K., Seifert G., Steinhäuser C., Kirchhoff F., Wolburg H., Guck J., Janmey P., Wei E., Käs J., et al. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 17759-17764.
  12. Butt H.J., Cappella B., Kappl M. // Surf. Sci. Rep. 2005. V. 59. P. 1-152.
  13. Yamane Y., Shiga H., Haga H., Kawabata K., Abe K., Ito E. // J. Electron Microsc. 2000. V. 49. P. 463-471.
  14. Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I., Chizhikc S.A., Zhdanov R.I. // Micron. 2007. V. 38. P. 824-833.
  15. Kirmizis D., Logothetidis S. // Int. J. Nanomed. 2010. V. 5. P. 137-145.
  16. Moore K., Macsween M., Shoichet M. // Tissue Eng. 2006. V. 12. P. 267-278.
  17. Cramer L., Desai A. // Fluorescence Procedures for the Actin and Tubulin Cytoskeleton in Fixed Cells. Protocol at
  18. Braet F., Wisse E. // Meth. Mol. Biol. 2004. V. 242. P. 201-217.
  19. Santacroce M., Orsini F., Perego C., Lenardi C., Castagna M., Mari S.A., Sacchi V.F., Poletti G. // J. Microsc. 2006. V. 223. P. 57-65.
  20. Costa K.D. // Meth. Mol. Biol. 2006. V. 319. P. 331-361.
  21. Lebedev D.V., Chuklanov A.P., Buharev A.A., Drujinina O.S. // Tech. Phys. Let. 2009. V. 35. P. 54-61.
  22. Burnham N., Chen X., Hodges C., Matei G.A., Thoreson E.J., Roberts C.J., Davies M.C., Tendler S.J.B. // Nanotechnol. 2003. V. 14. P. 1-6.
  23. Sader J.E., Chon J.W.M., Mulvaney P. // Rev. Sci. Instrum. 1999. V. 70. P. 3967-3970.
  24. Sneddon I.N. // Int. J. Eng. Sci. 1965. V. 3. P. 47-57.
  25. McNally H.A., Borgens R.B. // J. Neurocytol. 2004. V. 33. P. 251-258.
  26. Yamada K.M., Spooner B.S., Wessells N.K. // Proc. Natl. Acad. Sci. USA. 1970. V. 66. P. 1206-1212.
  27. Yamane Y., Hatakeyama D., Tojima T., Kawabata K., Ushiki T., Ogura S., Abe K., Ito E. // Jpn. J. Appi. Phys. 1998. V. 37. P. 3849-3854.
  28. Firouzi M., Sabouni F., Ziaee A.A., Taghikhani M. // Iran. Biomed. J. 2004. V. 8. P. 101-105.
  29. Mustata M., Ritchie K., McNally H.A. // J. Neurosci. Meth. 2010. V. 186. P. 35-41.
  30. Franze K., Reichenbach A., Kas J. // Mechanosensitivity of the Nervous System/ Ed. Kamkin A., Kiseleva I. Dordrecht: Springer Netherlands; 2009. V. 2. P. 173-213.
  31. Braet F., Rotsch C., Wisse E., Radmacher M. // Appl. Phys. A: Materials Sci. & Processing. 1998. V. 66. P. 575-578.
  32. George E.B., Glass J.D., Griffin J.W. // J. Neurosci. 1995. V. 15. P. 6445-6452.

Copyright (c) 2011 Efremov Y.M., Dzyubenko E.V., Bagrov D.V., Maksimov G.V., Shram S.I., Shaitan K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies