Statistics

Views

Abstract: 4155

PDF (English): 1119

PDF (Russian): 2104

Cited-by

CrossRef: 119

  1. Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Frontiers in Immunology. 2021;12. doi: 10.3389/fimmu.2021.638573
  2. Du W, Guo H, Nijman VS, Doedt J, Vries E, Lee J, et al. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLOS Pathogens. 2019;15(6):e1007860. doi: 10.1371/journal.ppat.1007860
  3. Kurebayashi Y, Takahashi T, Otsubo T, Minami A, Ikeda K, Suzuki T. Detection and Isolation of a Drug-Resistant Influenza Virus Using a Sialidase Fluorescence Imaging Technique. Trends in Glycoscience and Glycotechnology. 2020;32(186):E37. doi: 10.4052/tigg.1806.1E
  4. Abbadi N, Mousa JJ. Broadly Protective Neuraminidase-Based Influenza Vaccines and Monoclonal Antibodies: Target Epitopes and Mechanisms of Action. Viruses. 2023;15(1):200. doi: 10.3390/v15010200
  5. Yang T. Baloxavir Marboxil: The First Cap-Dependent Endonuclease Inhibitor for the Treatment of Influenza. Annals of Pharmacotherapy. 2019;53(7):754. doi: 10.1177/1060028019826565
  6. Chang C, You H, Huang S. Catechin inhibiting the H1N1 influenza virus associated with the regulation of autophagy. Journal of the Chinese Medical Association. 2020;83(4):386. doi: 10.1097/JCMA.0000000000000289
  7. Kumar A, Meldgaard TS, Bertholet S. Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in Immunology. 2018;9. doi: 10.3389/fimmu.2018.00600
  8. Tepeli Y, Ülkü A. Electrochemical biosensors for influenza virus a detection: The potential of adaptation of these devices to POC systems. Sensors and Actuators B: Chemical. 2018;254:377. doi: 10.1016/j.snb.2017.07.126
  9. Bao D, Xue R, Zhang M, Lu C, Ma T, Ren C, et al. N-Linked Glycosylation Plays an Important Role in Budding of Neuraminidase Protein and Virulence of Influenza Viruses. Journal of Virology. 2021;95(3). doi: 10.1128/JVI.02042-20
  10. Fu SK, Cheng LP. Discovery and synthesis of novel benzoylhydrazone neuraminidase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2024;105:129743. doi: 10.1016/j.bmcl.2024.129743
  11. Zhu B, Shen J, Zhao T, Jiang H, Ma T, Zhang J, et al. Intact Glycopeptide Analysis of Influenza A/H1N1/09 Neuraminidase Revealing the Effects of Host and Glycosite Location on Site‐Specific Glycan Structures. PROTEOMICS. 2019;19(3). doi: 10.1002/pmic.201800202
  12. Kormuth KA, Lakdawala SS. Emerging antiviral resistance. Nature Microbiology. 2019;5(1):4. doi: 10.1038/s41564-019-0639-7
  13. Somasundaram B, Fee CJ, Fredericks R, Watson A, Fairbanks AJ, Hall RJ. A surface plasmon resonance assay for measurement of neuraminidase inhibition, sensitivity of wild-type influenza neuraminidase and its H274Y mutant to the antiviral drugs zanamivir and oseltamivir. Journal of Molecular Recognition. 2015;28(9):521. doi: 10.1002/jmr.2467
  14. Xue M, Tan L, Zhang S, Wang J, Mi X, Si W, et al. Chemoenzymatic synthesis of sialyl-α2,3-lactoside–functionalized BSA conjugate inhibits influenza infection. European Journal of Medicinal Chemistry. 2024;276:116633. doi: 10.1016/j.ejmech.2024.116633
  15. Liu Q, Liu Y, Yang J, Huang X, Han K, Zhao D, et al. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice. Frontiers in Microbiology. 2016;7. doi: 10.3389/fmicb.2016.01737
  16. Naguib MM, Arafa A, Parvin R, Beer M, Vahlenkamp T, Harder TC. Insights into genetic diversity and biological propensities of potentially zoonotic avian influenza H9N2 viruses circulating in Egypt. Virology. 2017;511:165. doi: 10.1016/j.virol.2017.08.028
  17. Campbell AC, Tanner JJ, Krause KL. Optimisation of Neuraminidase Expression for Use in Drug Discovery by Using HEK293-6E Cells. Viruses. 2021;13(10):1893. doi: 10.3390/v13101893
  18. Volkhina IV, Butolin EG, Danilova LA. Prospects for the use of indicators of sialic acid metabolism in medicine (review of literature). Russian Clinical Laboratory Diagnostics. 2021;66(7):389. doi: 10.51620/0869-2084-2021-66-7-389-395
  19. Lo T, Weng I, Chen H, Liu F. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Seminars in Immunopathology. 2024;46(3-4). doi: 10.1007/s00281-024-01018-5
  20. Kang J, Liu C, Wang H, Li B, Li C, Chen R, et al. Studies on the Bioactive Flavonoids Isolated from Pithecellobium clypearia Benth. Molecules. 2014;19(4):4479. doi: 10.3390/molecules19044479
  21. Jeyaram RA, Radha CA. Investigation on the Binding Properties of N1 Neuraminidase of H5N1 Influenza Virus in Complex with Fluorinated Sialic Acid Analog Compounds—a Study by Molecular Docking and Molecular Dynamics Simulations. Brazilian Journal of Physics. 2022;52(1). doi: 10.1007/s13538-021-01009-z
  22. Zhang X, Ross TM. Anti-neuraminidase immunity in the combat against influenza. Expert Review of Vaccines. 2024;23(1):474. doi: 10.1080/14760584.2024.2343689
  23. Page CK, Tompkins SM. Influenza B Virus Receptor Specificity: Closing the Gap between Binding and Tropism. Viruses. 2024;16(9):1356. doi: 10.3390/v16091356
  24. Shariati FS, Fotouhi F, Farahmand B, Barghi Z, Azadmanesh K. Optimized production of a truncated form of the recombinant neuraminidase of influenza virus in Escherichia coli as host with suitable functional activity. Microbial Cell Factories. 2024;23(1). doi: 10.1186/s12934-024-02587-8
  25. Kissling VM, Eitner S, Bottone D, Cereghetti G, Wick P. Systematic Comparison of Commercial Uranyl‐Alternative Stains for Negative‐ and Positive‐Staining Transmission Electron Microscopy of Organic Specimens. Advanced Healthcare Materials. 2025;14(16). doi: 10.1002/adhm.202404870
  26. Galeone V, Lee C, Monaghan MT, Bauer DC, Wilson L. Evolutionary Insights from Association Rule Mining of Co-Occurring Mutations in Influenza Hemagglutinin and Neuraminidase. Viruses. 2024;16(10):1515. doi: 10.3390/v16101515
  27. Timofeeva TA, Rudneva IA, Lomakina NF, Timofeeva EB, Kupriyanova IM, Lyashko AV, et al. Mutations in the genome of avian influenza viruses of the H1 and H5 subtypes responsible for adaptation to mammals. Microbiology Independent Research Journal (MIR Journal). 2021;8(1). doi: 10.18527/2500-2236-2021-8-1-50-61
  28. Akshalova PB, Andriyasov AV, Scherbakova LO, Kolosov SN, Zinyakov NG, Chvala IA, et al. Development of real-time RT-PCR for N2 subtype avian influenza RNA-virus detection. Veterinary Science Today. 2020;(3):186. doi: 10.29326/2304-196X-2020-3-34-186-192
  29. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al. Isolation and characterization of equine influenza virus (H3N8) from an equine influenza outbreak in Malaysia in 2015. Transboundary and Emerging Diseases. 2019;66(5):1884. doi: 10.1111/tbed.13218
  30. Rajendran M, Krammer F, McMahon M. The Human Antibody Response to the Influenza Virus Neuraminidase Following Infection or Vaccination. Vaccines. 2021;9(8):846. doi: 10.3390/vaccines9080846
  31. Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral Drugs in Influenza. International Journal of Environmental Research and Public Health. 2022;19(5):3018. doi: 10.3390/ijerph19053018
  32. Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, et al. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines. 2024;12(12):1418. doi: 10.3390/vaccines12121418
  33. Shin W, Seong BL. Novel antiviral drug discovery strategies to tackle drug-resistant mutants of influenza virus strains. Expert Opinion on Drug Discovery. 2019;14(2):153. doi: 10.1080/17460441.2019.1560261
  34. Santos-Lima E, Cardoso K, Miranda P, Pimentel A, Carvalho-Filho P, Oliveira Y, et al. In silico analysis as a strategy to identify candidate epitopes with human IgG reactivity to study Porphyromonas gingivalis virulence factors. AMB Express. 2019;9(1). doi: 10.1186/s13568-019-0757-x
  35. Jones S, Nelson-Sathi S, Wang Y, Prasad R, Rayen S, Nandel V, et al. Evolutionary, genetic, structural characterization and its functional implications for the influenza A (H1N1) infection outbreak in India from 2009 to 2017. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-019-51097-w
  36. Elli S, Raffaini G, Guerrini M, Pond SK, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Frontiers in Microbiology. 2023;14. doi: 10.3389/fmicb.2023.1309156
  37. Dutta A, Huang C, Chen T, Lin C, Chiu C, Lin Y, et al. IL-10 inhibits neuraminidase-activated TGF-β and facilitates Th1 phenotype during early phase of infection. Nature Communications. 2015;6(1). doi: 10.1038/ncomms7374
  38. Yang X, Steukers L, Forier K, Xiong R, Braeckmans K, Reeth KV, et al. A Beneficiary Role for Neuraminidase in Influenza Virus Penetration through the Respiratory Mucus. PLoS ONE. 2014;9(10):e110026. doi: 10.1371/journal.pone.0110026
  39. Dedola S, Ahmadipour S, Andrade Pd, Baker AN, Boshra AN, Chessa S, et al. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chemical Biology. 2024;5(3):167. doi: 10.1039/D3CB00155E
  40. Akand EH, Downard KM. Mechanisms of antiviral resistance in influenza neuraminidase revealed by a mass spectrometry based phylonumerics approach. Molecular Phylogenetics and Evolution. 2019;135:286. doi: 10.1016/j.ympev.2019.03.009
  41. Anuwongcharoen N, Shoombuatong W, Tantimongcolwat T, Prachayasittikul V, Nantasenamat C. Exploring the chemical space of influenza neuraminidase inhibitors. PeerJ. 2016;4:e1958. doi: 10.7717/peerj.1958
  42. Yegani S, Shoushtari A, Eshratabadi F, Molouki A. Full sequence analysis of hemagglutinin and neuraminidase genes and proteins of highly pathogenic avian influenza H5N1 virus detected in Iran, 2015. Tropical Animal Health and Production. 2019;51(3):605. doi: 10.1007/s11250-018-1731-3
  43. Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides. 2020;134:170402. doi: 10.1016/j.peptides.2020.170402
  44. Galabov AS, Mileva M, Simeonova L, Gegova G. Combination activity of neuraminidase inhibitor oseltamivir and α-tocopherol in influenza virus A (H3N2) infection in mice. Antiviral Chemistry and Chemotherapy. 2015;24(3-4):83. doi: 10.1177/2040206616656263
  45. Youk S, Lee D, Leyson CM, Smith D, Criado MF, DeJesus E, et al. Loss of Fitness of Mexican H7N3 Highly Pathogenic Avian Influenza Virus in Mallards after Circulating in Chickens. Journal of Virology. 2019;93(14). doi: 10.1128/JVI.00543-19
  46. Sharapova Y, Suplatov D, Švedas V. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. The FEBS Journal. 2018;285(13):2428. doi: 10.1111/febs.14486
  47. Dai M, Guo H, Dortmans J, Dekkers J, Nordholm J, Daniels R, et al. Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins. Journal of Virology. 2016;90(20):9457. doi: 10.1128/JVI.01346-16
  48. Davidson S. Treating Influenza Infection, From Now and Into the Future. Frontiers in Immunology. 2018;9. doi: 10.3389/fimmu.2018.01946
  49. Sharapova Y, Suplatov D. Loop 422–437 in NanA from Streptococcus pneumoniae plays the role of an active site lid and is associated with allosteric regulation. Computers in Biology and Medicine. 2022;144:105290. doi: 10.1016/j.compbiomed.2022.105290
  50. Kurebayashi Y, Takahashi T, Tamoto C, Sahara K, Otsubo T, Yokozawa T, et al. High-Efficiency Capture of Drug Resistant-Influenza Virus by Live Imaging of Sialidase Activity. PLOS ONE. 2016;11(5):e0156400. doi: 10.1371/journal.pone.0156400
  51. Filip R, Leluk J. Comparative studies on variability, phylogenesis, and correlated mutations of neuraminidases from influenza virus type A. Bio-Algorithms and Med-Systems. 2018;14(1). doi: 10.1515/bams-2017-0030
  52. Lohia N, Baranwal M. Conserved Peptides Containing Overlapping CD4+ and CD8+ T-Cell Epitopes in the H1N1 Influenza Virus: An Immunoinformatics Approach. Viral Immunology. 2014;27(5):225. doi: 10.1089/vim.2013.0135
  53. Gao T, Liu J, Huang N, Zhou Y, Li C, Chen Y, et al. Sangju Cold Granule exerts anti-viral and anti-inflammatory activities against influenza A virus in vitro and in vivo. Journal of Ethnopharmacology. 2024;334:118521. doi: 10.1016/j.jep.2024.118521
  54. Wu S, Lin X, Hui KM, Yang S, Wu X, Tan Y, et al. A Biochemiluminescent Sialidase Assay for Diagnosis of Bacterial Vaginosis. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-019-56371-5
  55. Herman J, Rittenhouse N, Mandino F, Majid M, Wang Y, Mezger A, et al. Ventricular-subventricular zone stem cell niche adaptations in a mouse model of post-infectious hydrocephalus. Frontiers in Neuroscience. 2024;18. doi: 10.3389/fnins.2024.1429829
  56. Saucedo O, Martcheva M. Competition between low and high pathogenicity avian influenza in a two-patch system. Mathematical Biosciences. 2017;288:52. doi: 10.1016/j.mbs.2017.02.012
  57. Kurt M, Ercan S, Pirinccioglu N. Designing new drug candidates as inhibitors against wild and mutant type neuraminidases: molecular docking, molecular dynamics and binding free energy calculations. Journal of Biomolecular Structure and Dynamics. 2023;41(16):7847. doi: 10.1080/07391102.2022.2125440
  58. Banerjee N, Mukhopadhyay S. Viral glycoproteins: biological role and application in diagnosis. VirusDisease. 2016;27(1):1. doi: 10.1007/s13337-015-0293-5
  59. Debnath A, Saha A, Singh MK, Saha RP, Das A. Viral, Parasitic, Bacterial, and Fungal Infections Avian influenza virus: Prevalence infection and therapy . 2023;:141. doi: 10.1016/B978-0-323-85730-7.00035-7
  60. Governa P, Cusi MG, Borgonetti V, Sforcin JM, Terrosi C, Baini G, et al. Beyond the Biological Effect of a Chemically Characterized Poplar Propolis: Antibacterial and Antiviral Activity and Comparison with Flurbiprofen in Cytokines Release by LPS-Stimulated Human Mononuclear Cells. Biomedicines. 2019;7(4):73. doi: 10.3390/biomedicines7040073
  61. An S, Son S, Song J, Hong S, Lee C, Lee N, et al. Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines. 2022;10(2):162. doi: 10.3390/vaccines10020162
  62. Chaudhari SR, Salunkhe VK, Tabade SD, Bhonde PK, Kulkarni SG, Maykar DH, et al. A critical analytical aspect on analytical protocols in the pharmaceutical analysis of H1N1 antiviral agent and its active metabolite. Future Journal of Pharmaceutical Sciences. 2024;10(1). doi: 10.1186/s43094-024-00666-6
  63. Gubareva LV, Sleeman K, Guo Z, Yang H, Hodges E, Davis CT, et al. Drug Susceptibility Evaluation of an Influenza A(H7N9) Virus by Analyzing Recombinant Neuraminidase Proteins. The Journal of Infectious Diseases. 2017;216(suppl_4):S566. doi: 10.1093/infdis/jiw625
  64. Keenswijk W, Degraeuwe E, Dhont E, Raes A, Walle JV. Hemolytic Uremic Syndrome Associated With Non–Shigatoxin-producing Infectious Agents: Expanding the Shigatoxin Theory. Journal of Pediatric Hematology/Oncology. 2019;41(3):e179. doi: 10.1097/MPH.0000000000001196
  65. Singh N, Anjum N, Chandra R. Combating influenza: natural products as neuraminidase inhibitors. Phytochemistry Reviews. 2019;18(1):69. doi: 10.1007/s11101-018-9581-1
  66. Dai M, McBride R, Dortmans J, Peng W, Bakkers M, Groot R, et al. Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. Journal of Virology. 2017;91(9). doi: 10.1128/JVI.00049-17
  67. Favaro PF, Fernandes WR, Reischak D, Brandão PE, Silva S, Richtzenhain LJ. Evolution of equine influenza viruses (H3N8) during a Brazilian outbreak, 2015. Brazilian Journal of Microbiology. 2018;49(2):336. doi: 10.1016/j.bjm.2017.07.003
  68. Karhadkar TR, Meek TD, Gomer RH. Inhibiting Sialidase-Induced TGF-β1 Activation Attenuates Pulmonary Fibrosis in Mice. The Journal of Pharmacology and Experimental Therapeutics. 2021;376(1):106. doi: 10.1124/jpet.120.000258
  69. Hwang HS, Chang M, Kim YA. Influenza–Host Interplay and Strategies for Universal Vaccine Development. Vaccines. 2020;8(3):548. doi: 10.3390/vaccines8030548
  70. Pan J, Wang Q, Qi M, Chen J, Wu X, Zhang X, et al. An Intranasal Multivalent Epitope-Based Nanoparticle Vaccine Confers Broad Protection against Divergent Influenza Viruses. ACS Nano. 2023;17(14):13474. doi: 10.1021/acsnano.3c01829
  71. Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, et al. An Influenza A Vaccine Based on the Extracellular Domain of Matrix 2 Protein Protects BALB/C Mice Against H1N1 and H3N2. Vaccines. 2019;7(3):91. doi: 10.3390/vaccines7030091
  72. Odnovorov AI, Grebennikova TV, Pleteneva TV. Specific Influenza Therapy: Current State and Prospects (Review). Drug development & registration. 2020;9(1):83. doi: 10.33380/2305-2066-2020-9-1-83-91
  73. Amaro RE, Ieong PU, Huber G, Dommer A, Steven AC, Bush RM, et al. A Computational Assay that Explores the Hemagglutinin/Neuraminidase Functional Balance Reveals the Neuraminidase Secondary Site as a Novel Anti-Influenza Target. ACS Central Science. 2018;4(11):1570. doi: 10.1021/acscentsci.8b00666
  74. Kurebayashi Y, Takahashi T, Otsubo T, Minami A, Ikeda K, Suzuki T. Detection and Isolation of a Drug-Resistant Influenza Virus Using a Sialidase Fluorescence Imaging Technique. Trends in Glycoscience and Glycotechnology. 2020;32(186):J35. doi: 10.4052/tigg.1806.1J
  75. Egorova A, Richter M, Khrenova M, Dietrich E, Tsedilin A, Kazakova E, et al. Pyrrolo[2,3-e]indazole as a novel chemotype for both influenza A virus and pneumococcal neuraminidase inhibitors. RSC Advances. 2023;13(27):18253. doi: 10.1039/D3RA02895J
  76. Ibrahim M, Zakaria S, Bazid AI, Kilany WH, El-Abideen M, Ali A. A single dose of inactivated oil-emulsion bivalent H5N8/H5N1 vaccine protects chickens against the lethal challenge of both highly pathogenic avian influenza viruses. Comparative Immunology, Microbiology and Infectious Diseases. 2021;74:101601. doi: 10.1016/j.cimid.2020.101601
  77. Valle-Núñez G, Cedillo-González R, Avellaneda-Tamayo JF, Saldívar-González FI, Prado-Romero DL, Medina-Franco JL. Machine learning-driven antiviral libraries targeting respiratory viruses. Digital Discovery. 2025;4(5):1239. doi: 10.1039/D5DD00037H
  78. Guo H, Rabouw H, Slomp A, Dai M, Vegt F, Lent J, et al. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLOS Pathogens. 2018;14(8):e1007233. doi: 10.1371/journal.ppat.1007233
  79. Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology. 2022;227(6):152279. doi: 10.1016/j.imbio.2022.152279
  80. Abolnik C, Strydom C, Rauff DL, Wandrag D, Petty D. Continuing evolution of H6N2 influenza a virus in South African chickens and the implications for diagnosis and control. BMC Veterinary Research. 2019;15(1). doi: 10.1186/s12917-019-2210-4
  81. Danzy S, Studdard LR, Manicassamy B, Solorzano A, Marshall N, García-Sastre A, et al. Mutations to PB2 and NP Proteins of an Avian Influenza Virus Combine To Confer Efficient Growth in Primary Human Respiratory Cells. Journal of Virology. 2014;88(22):13436. doi: 10.1128/JVI.01093-14
  82. Tabata KV, Minagawa Y, Kawaguchi Y, Ono M, Moriizumi Y, Yamayoshi S, et al. Antibody-free digital influenza virus counting based on neuraminidase activity. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-018-37994-6
  83. Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochimica et Biophysica Acta (BBA) - General Subjects. 2019;1863(10):1480. doi: 10.1016/j.bbagen.2019.05.012
  84. Mehta D, Spearman P. Molecular Medical Microbiology Influenza viruses . 2024;:2357. doi: 10.1016/B978-0-12-818619-0.00148-9
  85. Doorn Ev, Pleguezuelos O, Liu H, Fernandez A, Bannister R, Stoloff G, et al. Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial. BMC Infectious Diseases. 2017;17(1). doi: 10.1186/s12879-017-2341-9
  86. Varghese PM, Kishore U, Rajkumari R. Human C1q Regulates Influenza A Virus Infection and Inflammatory Response via Its Globular Domain. International Journal of Molecular Sciences. 2022;23(6):3045. doi: 10.3390/ijms23063045
  87. Yadavalli T, Volety I, Shukla D. Aptamers in Virology—A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics. 2021;13(10):1646. doi: 10.3390/pharmaceutics13101646
  88. Javanian M, Barary M, Ghebrehewet S, Koppolu V, Vasigala V, Ebrahimpour S. A brief review of influenza virus infection. Journal of Medical Virology. 2021;93(8):4638. doi: 10.1002/jmv.26990
  89. Yadav Y, Tyagi R, Kumar R, Sagar R. Conformationally locked sugar derivatives and analogues as potential neuraminidase inhibitors. European Journal of Medicinal Chemistry. 2023;255:115410. doi: 10.1016/j.ejmech.2023.115410
  90. Vidaña B, Martínez-Orellana P, Martorell J, Baratelli M, Martínez J, Migura-Garcia L, et al. Differential Viral-Host Immune Interactions Associated with Oseltamivir-Resistant H275Y and Wild-Type H1N1 A(pdm09) Influenza Virus Pathogenicity. Viruses. 2020;12(8):794. doi: 10.3390/v12080794
  91. Wan H, Qi L, Gao J, Couzens LK, Jiang L, Gao Y, et al. Comparison of the Efficacy of N9 Neuraminidase-Specific Monoclonal Antibodies against Influenza A(H7N9) Virus Infection. Journal of Virology. 2018;92(4). doi: 10.1128/JVI.01588-17
  92. Faustova NM, Petlitskaya SS, Ampilogova IN, Karlina MV, Makarova MN, Makarov VG. Neuraminidase Inhibitors: Development and Validation of a Procedure for In Vitro Determination of the Inhibitory Effect. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(1):60. doi: 10.30895/1991-2919-2022-387
  93. Greenfield SR, Eng H, Yang Q, Guo C, Byrnes L, Dantonio A, et al. Species differences in plasma protein binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease inhibitor nirmatrelvir. Xenobiotica. 2023;53(1):12. doi: 10.1080/00498254.2023.2183158
  94. AbuBakar U, Amrani L, Kamarulzaman FA, Karsani SA, Hassandarvish P, Khairat JE. Avian Influenza Virus Tropism in Humans. Viruses. 2023;15(4):833. doi: 10.3390/v15040833
  95. Li Y, Liu H, Yang M, Liu D, Song J, Lao Z, et al. Preparation of eicosavalent triazolylsialoside-conjugated human serum albumin as a dual hemagglutinin/neuraminidase inhibitor and virion adsorbent for the prevention of influenza infection. Carbohydrate Research. 2023;532:108918. doi: 10.1016/j.carres.2023.108918
  96. Gao R, Sheng Z, Sreenivasan CC, Wang D, Li F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses. 2020;12(3):276. doi: 10.3390/v12030276
  97. Warfield KL, Schaaf KR, DeWald LE, Spurgers KB, Wang W, Stavale E, et al. Lack of selective resistance of influenza A virus in presence of host-targeted antiviral, UV-4B. Scientific Reports. 2019;9(1). doi: 10.1038/s41598-019-43030-y
  98. Evteev S, Nilov D, Polenova A, Švedas V. Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. International Journal of Molecular Sciences. 2021;22(23):13112. doi: 10.3390/ijms222313112
  99. Bera BC, Virmani N, Shanmugasundaram K, Vaid RK, Singh BK, Gulati BR, et al. Genetic Analysis of the Neuraminidase (NA) Gene of Equine Influenza Virus (H3N8) from Epizootic of 2008–2009 in India. Indian Journal of Virology. 2013;24(2):256. doi: 10.1007/s13337-013-0137-0
  100. Hershow RC, Nusbaum KE. Beyond One Health Emerging Infectious Diseases . 2018;:179. doi: 10.1002/9781119194521.ch7
  101. Mathew S, Thani A, Yassine HM, Brevern A. Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors. PLOS ONE. 2018;13(9):e0203148. doi: 10.1371/journal.pone.0203148
  102. Chen W, Ma T, Liu S, Zhong Y, Yu H, Shu J, et al. N-Glycan Profiles of Neuraminidase from Avian Influenza Viruses. Viruses. 2024;16(2):190. doi: 10.3390/v16020190
  103. Swaminathan K, Downard KM. Evolution of Influenza Neuraminidase and the Detection of Antiviral Resistant Strains Using Mass Trees. Analytical Chemistry. 2014;86(1):629. doi: 10.1021/ac402892m
  104. Qin H, Huang Z, Mi X, Zhang S, Liu H, Wang J, et al. Preparation of a thioxoimidazolidin-linked sialoside BSA conjugate for the inhibition of influenza virus. Carbohydrate Research. 2024;545:109287. doi: 10.1016/j.carres.2024.109287
  105. Gorshkov A, Varyushina E. Knockin’ on Cell’s Door: Influenza A Virus Adsorption and Its Pharmacological Inhibition. Microbiology Research. 2025;16(2):37. doi: 10.3390/microbiolres16020037
  106. Ng WM, Stelfox AJ, Bowden TA. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evolution. 2020;6(1). doi: 10.1093/ve/veaa003
  107. Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, et al. Antiviral Approaches against Influenza Virus. Clinical Microbiology Reviews. 2023;36(1). doi: 10.1128/cmr.00040-22
  108. Liu Q, Chen H, Huang J, Chen Y, Gu M, Wang X, et al. A nonpathogenic duck-origin H9N2 influenza A virus adapts to high pathogenicity in mice. Archives of Virology. 2014;159(9):2243. doi: 10.1007/s00705-014-2062-y
  109. Gao R, Bai T, Li X, Xiong Y, Huang Y, Pan M, et al. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features. Virology. 2016;488:149. doi: 10.1016/j.virol.2015.11.013
  110. Gangwar M, Dey A, Chowdhury SR, Gautam MK, Prakash P, Nath G. Botanical warriors: Harnessing nature's antiviral arsenal – A comprehensive study of medicinal plants combatting pathogenic viral infections. Pharmacological Research - Natural Products. 2024;3:100043. doi: 10.1016/j.prenap.2024.100043
  111. Reiter-Scherer V, Cuellar-Camacho JL, Bhatia S, Haag R, Herrmann A, Lauster D, et al. Force Spectroscopy Shows Dynamic Binding of Influenza Hemagglutinin and Neuraminidase to Sialic Acid. Biophysical Journal. 2019;116(6):1037. doi: 10.1016/j.bpj.2019.01.041
  112. Lakdawala SS, Lamirande EW, Suguitan AL, Wang W, Santos CP, Vogel L, et al. Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus. PLoS Pathogens. 2011;7(12):e1002443. doi: 10.1371/journal.ppat.1002443
  113. Principi N, Camilloni B, Alunno A, Polinori I, Argentiero A, Esposito S. Drugs for Influenza Treatment: Is There Significant News?. Frontiers in Medicine. 2019;6. doi: 10.3389/fmed.2019.00109
  114. Caly L, Ghildyal R, Jans DA. Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention?. Frontiers in Microbiology. 2015;6. doi: 10.3389/fmicb.2015.00848
  115. Kurebayashi Y. Analysis and Control of Viral Infection Mechanisms by Glycobiology. YAKUGAKU ZASSHI. 2022;142(10):1083. doi: 10.1248/yakushi.22-00120
  116. Gattani A, Singh SV, Kirthika P, Agrawal A, Mahawar M, Bag S, et al. Fetuin derivatised surface for evaluation of neuraminidase inhibitors of Peste des petits ruminants virus on electrochemical impedance sensor. Sensors and Actuators Reports. 2021;3:100047. doi: 10.1016/j.snr.2021.100047
  117. Mahal A, Duan M, Zinad DS, Mohapatra RK, Obaidullah AJ, Wei X, et al. Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Advances. 2021;11(3):1804. doi: 10.1039/D0RA07283D
  118. Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiology Reviews. 2024;48(3). doi: 10.1093/femsre/fuae014
  119. Shanko A, Shuklina M, Kovaleva A, Zabrodskaya Y, Vidyaeva I, Shaldzhyan A, et al. Comparative Immunological Study in Mice of Inactivated Influenza Vaccines Used in the Russian Immunization Program. Vaccines. 2020;8(4):756. doi: 10.3390/vaccines8040756

Article Metrics

Metrics Loading ...

Dimensions

PlumX