# The Toxin-Producing Ability of *Fusarium Proliferatum* Strains Isolated from Grain

## O. P. Gavrilova<sup>1\*</sup>, A. S. Orina<sup>1</sup>, T. Yu. Gagkaeva<sup>1</sup>, N. N. Gogina<sup>2</sup>

<sup>1</sup>All-Russian Institute of Plant Protection, St. Petersburg, 196608 Russian Federation <sup>2</sup>All-Russian Scientific Research and Technological Institute of Poultry, Sergiev Posad, 141311 Russian Federation <sup>\*</sup>E-mail: olgavrilova1@yandex.ru Received: October 21, 2024; in final form, December 02, 2024 DOI: 10.32607/actanaturae.27546

Copyright © 2025 National Research University Higher School of Economics. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT The widespread fungus Fusarium proliferatum can infect numerous plant species and produce a range of mycotoxins, the amount of which can vary significantly. Twelve F. proliferatum sensu lato strains isolated from six wheat, four oat, and two maize grain samples were analyzed. The strains were identified through a phylogenetic analysis of nucleotide sequences derived from gene fragments of the translation elongation factor EF-1 $\alpha$ ,  $\beta$ -tubulin, and RNA polymerase II second subunit. The mating types of the strain were determined by allele-specific PCR. Secondary toxic metabolite production by the strains was quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). All twelve Fusarium strains formed a distinct clade alongside the F. proliferatum reference strains, thereby confirming the taxonomic identification. Only one idiomorph at the MAT locus in each F. proliferatum strain was found, indicative of heterothallic mating. The frequency of the MAT1-1 idiomorph was double that of the MAT1-2 idiomorph. The active biosynthesis of fumonisins B<sub>1</sub> (71–6175 mg/kg), B<sub>2</sub> (12–2661 mg/kg), and B<sub>3</sub> (6–588 mg/kg), significant beauvericin (64–455 mg/kg), and trace amounts of moniliformin (12–6565 µg/kg) were identified across all examined F. proliferatum strains.

KEYWORDS Fusarium, phylogenetic analysis, mycotoxins, HPLC-MS/MS.

**ABBREVIATIONS FF** – Fusarium fujikuroi; tef – the translation elongation factor 1- $\alpha$  gene; tub –  $\beta$ -tubilin gene; rpb2 – second subunit gene of RNA polymerase II; ML (maximum likelihood) – maximum likelihood method; BP (Bayesian probability) – Bayesian posterior probability scores; MAT locus – mating type locus; HPLC-MS/MS – high-performance liquid chromatography coupled with a tandem mass spectrometry; FUM – group B fumonisins; FB<sub>1</sub> – fumonisin B<sub>1</sub>; FB<sub>2</sub> – fumonisin B<sub>2</sub>; FB<sub>3</sub> – fumonisin B<sub>3</sub>; BEA – beauvericin; MON – moniliformin.

## INTRODUCTION

Among the *Fusarium* genus, the *Fusarium fujikuroi* (FF) species complex is particularly large and serves as a prime illustration of the considerable evolution undergone by species concepts. A dataset of both morphological and molecular studies reveals the FF species complex to contain more than 60 identified species, though this figure is probably an underestimate [1]. Taxonomic resolution within the FF species complex is achieved through the integration of physiological and biochemical characteristics due to the ambiguity, instability, and limited utility of morphological traits for species delimitation. Molecular technologies have revealed the paraphyletic nature of previously characterized FF species, demonstrating morphological convergence among phylogenetically disparate taxa [2–4].

Species within the FF complex include plant pathogens, endophytes, and pathogens of humans and animals [5]. The secondary metabolites produced by these fungi exhibit structural diversity and include mycotoxins and phytohormones such as gibberellins, auxins, and cytokinins [6, 7]. A comprehensive understanding of secondary metabolite diversity within various members of the FF species complex remains elusive, with potential discrepancies even between closely related species. Distinguishing between *Fusarium* species with clarity and thoroughly characterizing their properties improves the accuracy of strain identification and expands our understanding of their biological features.

One of the most actively studied members of the FF species complex is *F. proliferatum* (Matsush.) Nirenberg ex Gerlach & Nirenberg. This is due to its ubiquitous distribution and ability to infect a wide range of plants [11], including cereals, legumes [12, 13], vegetables [14], and fruit crops [15–17]. The mani-

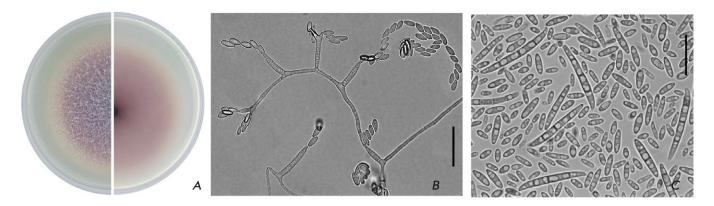



Fig. 1. (A) – culture of F. proliferatum MFG 58486 (potato-sucrose agar, 7 days, 25°C, in the dark); (B) – microconidia on mono- and polyphyalides; (C) – microconidia and macroconidia (synthetic Nirenberg agar, 14 days, 25°C, in the dark). Scale bars =  $20 \mu m$ 

festations of diseases caused by *F. proliferatum* include wilting and rot [13, 18, 19], with asymptomatic infection also frequently observed. Similar to the closely related species *F. verticillioides* (Sacc.) Nirenberg, *F. proliferatum* is one of the most harmful pathogens for maize, causing cob and stem rots [20]. Under optimal fungal growth conditions in cereal crops, infected wheat grains may exhibit stunted growth and black germ [21], while infected oats may display discoloration, necrotic lesions on spikelet scales, and grain browning [22].

Due to the abundant formation of microconidia in false heads, short chains on mono- and polyphyalides, and macroconidia (*Fig. 1*), *F. proliferatum* is easily spread through the air and transferred by insects to new uninfected plants [23]. Like many other pathogens, it persists in seeds [14] and on plant debris in soil [24].

*F. proliferatum* has a teleomorphic stage characterized by the formation of perithecia containing ascospores on the substrate surface [25]. Sexual reproduction in heterothallic members of the FF species complex requires different sets of opposite matingtype genes, this characteristic determined by the MAT locus and its two idiomorphs, MAT1-1 and MAT1-2 [26]. A balanced effective population size, with roughly equal proportions of each mating type, is necessary for sexual reproduction in heterothallic species. A skewed distribution of mating types, however, can impair sexual sporulation and diminish intraspecific diversity [27].

Similar to other fungi of the FF species complex, *F. proliferatum* produces toxic secondary metabolites: FUM, BEA, MON, fusaproliferin, fusarins, fusaric acid, and others, which can accumulate in grain and pose a health hazard to its consumers [28]. A reliable relationship between *F. proliferatum* infection of wheat grain and the amount of FUM detected in it has been established [29, 30]. A summary of the current data on mycotoxin contamination in various cereal grains reveals that wheat and barley exhibit lower levels of fumonisin accumulation [31–33] compared to maize, which frequently displays significantly higher amounts [34, 35]. The mycotoxin amounts produced by *F. proliferatum* strains of different substrate origin can vary significantly, and both active producers and non-toxigenic strains can be found among them [8, 28, 29, 36–38].

The objective of this research was the phylogenetic identification of *F. proliferatum* strains isolated from cereal crops and the subsequent *in vitro* determination of their ability for mycotoxin production.

## **EXPERIMENTAL**

#### Fusarium strains

A choice of twelve fungal strains, identified morphologically as belonging to the FF species complex, was made from the pure culture collection maintained in the laboratory of mycology and phytopathology of VIZR (*Table 1*). All the strains were isolated from grain samples collected from different regions of the Russian Federation: six from wheat (*Triticum aestivum* L.), four from oats (*Avena sativa* L.), and two from maize (*Zea mays* L.).

### Molecular and genetic analysis

Potato-sucrose agar (PSA) was used as the growth medium for all fungal strains. Cultivation occurred within a KBW 400 thermostat (Binder, Germany) at 25°C for 7 days. Fungal DNA was isolated from the mycelium via a standard protocol employing a 2% cetyltrimethylammonium bromide/chloroform solution.

The *tef*, *tub*, and *rpb2* gene fragments were amplified using the primers EF1/EF2, T1/T2, and

| Ctara in anna h an       | Onigin                 | TLest slesst | st plant Year | GenBank accsession number |          |          |  |  |
|--------------------------|------------------------|--------------|---------------|---------------------------|----------|----------|--|--|
| Strain number            | Origin                 | Host plant   |               | tef                       | tub      | rpb2     |  |  |
| $\mathrm{MFG}^{*}$ 58227 | Krasnodarskiy kray     | wheat        | 2009          | MW811114                  | OK000500 | OK000527 |  |  |
| MFG 58471                | Krasnodarskiy kray     | wheat        | 2012          | MW811115                  | OK000501 | OK000528 |  |  |
| MFG 58486                | Krasnodarskiy kray     | wheat        | 2012          | MW811117                  | OK000503 | OK000530 |  |  |
| MFG 59046                | Krasnodarskiy kray     | wheat        | 2016          | MW811122                  | OK000508 | OK000535 |  |  |
| MFG 60309                | Krasnodarskiy kray     | wheat        | 2017          | MW811125                  | OK000513 | OK000540 |  |  |
| MFG 60803                | Amur region            | wheat        | 2019          | MW811134                  | OK000522 | OK000549 |  |  |
| MFG 58589                | Leningrad region       | oats         | 2013          | MW811118                  | OK000504 | OK000531 |  |  |
| MFG 58590                | Primorsky Krai         | oats         | 2013          | MW811119                  | OK000505 | OK000532 |  |  |
| MFG 92501                | Leningrad region       | oats         | 2007          | MW811135                  | OK000524 | OK000551 |  |  |
| MFG 58667                | Nizhny Novgorod region | oats         | 2014          | MW811121                  | OK000507 | OK000534 |  |  |
| MFG 58484                | Voronezh region        | maize        | 2012          | MW811116                  | OK000502 | OK000529 |  |  |
| MFG 58603                | Lipetsk region         | maize        | 2012          | MW811120                  | OK000506 | OK000533 |  |  |

## Table 1. F. proliferatum strains included in the study

Note. MFG – the culture collection of the laboratory of mycology and phytopathology of VIZR, St. Petersburg, Russia.

fRPB2-5F/fRPB2-7Cr [39]. The resulting fragments were sequenced by the Sanger sequencing method on an ABIPrism 3500 sequencer (Applied Biosystems – Hitachi, Japan) using the BigDye Terminator v3.1 Cycle Sequencing Kit (ABI, USA). The consensus nucleotide sequences were aligned in the Vector NTI Advance 10 program (Thermo Fisher Scientific, USA) and deposited in the NCBI GenBank database (*Table 1*).

The phylogenetic analysis involved nucleotide sequences from representative *Fusarium* strains from the collections of the Agricultural Research Service Cultural Collection (NRRL, USA), Westerdijk Institute for Fungal Biodiversity (CBS, The Netherlands), and other collections (*Table 2*). The phylogenetic relationships among taxa were evaluated by the ML method using the program IQ-TREE 2 v.2.1.3. Optimal nucleotide substitution modeling for maximum likelihood (ML) tree inference was achieved using TIM2e+R2, as determined by IQ-TREE 2 v.2.1.3. A bootstrap analysis (1 000 replicates) was conducted to evaluate the robustness of the phylogenetic tree topology. The BP values were calculated using MrBayes version 3.2.1, implemented on the Armadillo 1.1 platform.

The mating type of the strains was identified by allele-specific PCR. The primers Gfmat1a/Gfmat1b (MAT1-1) and Gfmat1c/Gfmat1d (MAT1-2), designed for the FF species complex, were employed in accordance with the protocol in [40], but the annealing temperature was changed to 55°C. The fragment sizes corresponding to the MAT1-1 and MAT1-2 alleles were 200 and 800 bp, respectively.

## **Mycotoxin** analysis

A mixture of twenty grams of rice grains and twelve milliliters of water contained within 250 mL glass vessels underwent autoclaving at 121°C for forty minutes. Following the autoclaving, the rice grains were cooled and inoculated with two 5 mm diameter disks cut from fungal cultures grown on PSA. Uninoculated grains served as the control. A two-week incubation period in the dark at 25°C was implemented, with daily shaking of the flasks. The samples were dried at 55°C for 24 h, then ground using a laboratory mill (IKA, Germany) at 25 000 rpm for one minute, and subsequently stored at -20°C.

HPLC-MS/MS analysis was used to determine the profile of secondary toxic metabolites [41]. Five grams of rice flour were combined with 20 milliliters of extraction solvent (acetonitrile/water/acetic acid, 79 : 20 : 1). Secondary metabolites detection and quantification were conducted using an AB SCIEX Triple Quad<sup>®</sup> 5500 MS/MS system (Applied Biosystems, USA), incorporating a TurboV electrospray ionization source (SCIEX, USA) and an Agilent Infinity 1290 series microwave analysis system (Agilent, USA). Chromatographic separation was achieved using a Phenomenex (USA) Gemini C18 column (150 × 4.6 mm) at a temperature of 25°C.

The content of  $FB_1$ ,  $FB_2$ ,  $FB_3$ , BEA, and MON were analyzed in the extracts. Mycotoxin recovery rates ranged from 79% to 105%. Mycotoxin quantification was achieved through a comparative analysis of peak areas against the calibration curves generated from standard solutions (Romer Labs Diagnostic GmbH,

## Table 2. Reference strains of *Fusarium* spp. included in the phylogenetic analysis

| Spacing         | Strain number in the |                 |                                 | 37   | GenBank accsession number |          |          |
|-----------------|----------------------|-----------------|---------------------------------|------|---------------------------|----------|----------|
| Species         | collection*          | Origin          | Substrate                       | Year | tef                       | tub      | rpb2     |
| F. acutatum     | CBS 402.97 T         | India           |                                 | 1995 | MW402125                  | MW402323 | MW402768 |
| F. acutatum     | NRRL 13308           | India           |                                 | 1985 | AF160276                  | MW402348 | MN193883 |
| F. agapanthi    | NRRL 54463 T         | Australia       | Agapanthus sp.                  | 2010 | KU900630                  | KU900635 | KU900625 |
| F. agapanthi    | NRRL 54464           | Australia       | Agapanthus sp.                  | 2010 | MN193856                  | KU900637 | KU900627 |
| F. aglaonematis | ZHKUCC 22-0077 T     | China           | Aglaonema<br>modestum, stem     | 2020 | ON330437                  | ON330440 | ON330443 |
| F. aglaonematis | ZHKUCC 22-0078       | China           | Aglaonema<br>modestum, stem     | 2020 | ON330438                  | ON330441 | ON330444 |
| F. anthophilum  | CBS 119859           | New<br>Zealand  | <i>Cymbidium</i> sp.,<br>leaves |      | MN533991                  | MN534092 | MN534233 |
| F. anthophilum  | CBS 222.76 T         | Germany         | Euphorbia<br>pulcherrima, stem  |      | MW402114                  | MW402312 | MW402811 |
| F. concentricum | CBS 450.97 T         | Costa Rica      | Musa sapientum,<br>fruit        | 1983 | AF160282                  | MW402334 | JF741086 |
| F. concentricum | CBS 453.97           | Guatemala       | Musa sapientum                  | 1996 | MN533998                  | MN534123 | MN534264 |
| F. elaeagni     | LC 13627 T           | China           | Elaeagnus<br>pungens            | 2017 | MW580466                  | MW533748 | MW474412 |
| F. elaeagni     | LC 13629             | China           | Elaeagnus<br>pungens            | 2017 | MW580468                  | MW533750 | MW474414 |
| F. erosum       | LC 15877 T           | China           | maize, stem                     | 2021 | OQ126066                  | OQ126321 | OQ126518 |
| F. erosum       | LC 18581             | China           | maize, cob                      | 2021 | OQ126067                  | OQ126320 | OQ126519 |
| F. fujikuroi    | CBS 221.76 T         | Taiwan          | <i>Oryza sativa</i> , stem      | 1973 | MN534010                  | MN534130 | KU604255 |
| F. fujikuroi    | CBS 257.52           | Japan           | Oryza sativa,<br>seedling       | 1947 | MW402119                  | MW402317 | MW402812 |
| F. globosum     | CBS 428.97 T         | South<br>Africa | Zea mays, seed                  | 1992 | KF466417                  | MN534124 | KF466406 |
| F. globosum     | CBS 120992           | South<br>Africa | Zea mays, seed                  | 1992 | MW401998                  | MW402198 | MW402788 |
| F. hechiense    | LC 13644 T           | China           | Musa nana                       | 2017 | MW580494                  | MW533773 | MW474440 |
| F. hechiense    | LC 13646             | China           | Musa nana                       | 2017 | MW580496                  | MW533775 | MW474442 |
| F. lumajangense | InaCCF 872 T         | Indonesia       | Musa acuminata,<br>stem         | 2014 | LS479441                  | LS479433 | LS479850 |
| F. lumajangense | InaCCF 993           | Indonesia       | Musa acuminata,<br>stem         | 2014 | LS479442                  | LS479434 | LS479851 |
| F. mangiferae   | CBS 120994 T         | Israel          | Mangifera indica                | 1993 | MN534017                  | MN534128 | MN534271 |
| F. mangiferae   | NRRL 25226           | India           | Mangifera indica                |      | AF160281                  | U61561   | HM068353 |
| F. nirenbergiae | CBS 744.97           | USA             | Pseudotsuga<br>menziesii        | 1994 | AF160312                  | U34424   | LT575065 |
| F. nygamai      | NRRL 13448 T         | Australia       | Sorghum bicolor                 | 1980 | AF160273                  | U34426   | EF470114 |
| F. nygamai      | CBS 834.85           | India           | Cajanus cajan                   |      | MW402154                  | MW402355 | MW402821 |
| F. panlongense  | LC 13656 T           | China           | Musa nana                       | 2017 | MW580510                  | MW533789 | MW474456 |
| F. panlongense  | MUCL 55950           | China           | Musa sp.                        | 2012 | LT574905                  | LT575070 | LT574986 |

## Table 2 (continued).

| Creation           | Strain number in the | Oninin           | Substrate                     | 37   | GenBank accsession number |          |          |
|--------------------|----------------------|------------------|-------------------------------|------|---------------------------|----------|----------|
| Species            | collection*          | Origin           | Substrate                     | Year | tef                       | tub      | rpb2     |
| F. proliferatum    | NRRL 22944           | Germany          | Cymbidium sp.                 | 1994 | AF160280                  | U34416   | JX171617 |
| F. proliferatum    | ITEM 2287            | Italy            |                               |      | LT841245                  | LT841243 | LT841252 |
| F. proliferatum    | NRRL 31071           | USA              | wheat                         | 2001 | AF291058                  | AF291055 |          |
| F. proliferatum    | NRRL 32155           | India            | Cicer arietinum               |      | FJ538242                  |          |          |
| F. proliferatum    | CBS 131570           | Iran             | wheat                         |      | JX118976                  |          | JX162521 |
| F. sacchari        | CBS 223.76 T         | India            | Saccharum<br>officinarum      | 1975 | MW402115                  | MW402313 | JX171580 |
| F. sacchari        | CBS 131372           | Australia        | Oryzae<br>australiensis, stem | 2009 | MN534033                  | MN534134 | MN534293 |
| F. sanyaense       | LC 15882 T           | China            | maize, stem                   | 2021 | OQ126093                  | OQ126322 | OQ126547 |
| F. sanyaense       | LC 18540             | China            | maize, stem                   | 2021 | OQ126095                  | OQ126308 | OQ126549 |
| F. siculi          | CBS 142222 T         | Italy            | Citrus sinensis               | 2015 | LT746214                  | LT746346 | LT746327 |
| F. siculi          | CPC 27189            | Italy            | Citrus sinensis               |      | LT746215                  | LT746347 | LT746328 |
| F. sterilihyposum  | NRRL 53991           | Brazil           | Mangifera indica              | 2009 | GU737413                  | GU737305 |          |
| F. sterilihyposum  | NRRL 53997           | Brazil           | Mangifera indica              | 2009 | GU737414                  | GU737306 |          |
| F. subglutinans    | CBS 536.95           |                  |                               |      | MW402139                  | MW402339 |          |
| F. subglutinans    | CBS 136481           | Italy            | human blood                   |      | MW402059                  | MW402258 | MW402748 |
| F. verticillioides | NRRL 22172           | Germany          | maize                         | 1992 | AF160262                  | U34413   | EF470122 |
| F. verticillioides | CBS 531.95           |                  | Zea mays                      |      | MW402136                  | MW402336 | MW402771 |
| F. xylaroides      | NRRL 25486 T         | Côte<br>d'Ivoire | Coffea sp., stem              | 1951 | AY707136                  | AY707118 | JX171630 |
| F. xylaroides      | CBS 749.79           | Guinea           | Coffea robusta                | 1963 | MN534049                  | MN534143 | MN534259 |

\*Note. Acronyms of the culture collections: CBS – the Westerdijk Institute for Fungal Biodiversity (Utrecht, The Netherlands); InaCCF – the Indonesian Biology Research Center (Cibinong, Indonesia); ITEM – the Institute of Science of Food Production (Bari, Italy); LC – the laboratory of Dr. Lei Cai, Institute of Microbiology, Chinese Academy of Sciences (Beijing, China); MUCL – the Laboratory of Mycology, Université Catholique de Louvain (Ottigny-Louvain-la-Neuve, Belgium); NRRL – the Agricultural Research Service Cultural Collection (Peoria, USA); ZHKUCC – the Zhongkai University of Agriculture and Engineering (Guangzhou, China); T – type strain.

Austria). The limits of quantification for BEA and MON were 1.9 and 3.1  $\mu$ g/kg, respectively; FB<sub>1</sub>, FB<sub>2</sub>, and FB<sub>3</sub> displayed limits of 8.7, 3.2, and 3.2  $\mu$ g/kg, respectively.

## Statistical analysis

Statistical computations were performed with the aid of Microsoft Excel 2010 and Minitab 17.0.

## **RESULTS AND DISCUSSION**

**Molecular and genetic characterization of the strains** The phylogenetic analysis included the combined sequences (1913 bp) of three loci: tef - 615 bp, tub - 473 bp, and rpb2 - 825 bp, with 154 bp (25.0%), 70 bp (14.8%), and 141 bp (17.1%) informative sites, respectively. All the twelve strains were clustered to a sep-

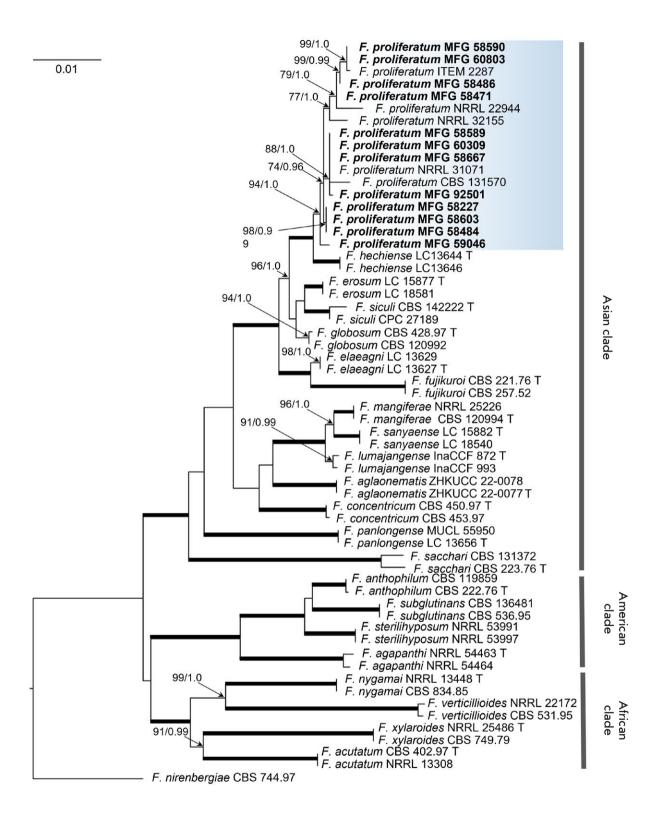



Fig. 2. Dendrogram of phylogenetic similarity of *Fusarium* spp. based on combined nucleotide sequences of the *tef*, *tub*, and *rpb2* gene fragments by the ML method. Nodes show bootstrap support values (> 70%) in the ML analysis, as well as BP values (> 0.95). The thickening of lines signifies support at the 100/1.0 ML/BP level. Strains within the study, obtained from the MFG collection, are denoted in bold. *F. nirenbergiae* strain CBS 744.97 was designated as the outgroup

| Host plant          | Mycotoxins*     |              |               |  |  |  |
|---------------------|-----------------|--------------|---------------|--|--|--|
| (number of strains) | FUM, mg/kg      | BEA, mg/kg   | MON, µg/kg    |  |  |  |
| Wheat (6)           | $3470 \pm 1008$ | $307 \pm 67$ | $1690\pm764$  |  |  |  |
| Oat (4)             | $4024 \pm 1930$ | $385 \pm 43$ | $260 \pm 158$ |  |  |  |
| Maize (2)           | 3538; 5578      | 363; 158     | 1041; 6565    |  |  |  |

#### Table 3. Toxin-producing ability of F. proliferatum strains isolated from different cereal crops

Presented are the mean values and the confidence intervals at a significance level of p < 0.05.

arate bootstrap-supported clade, ML/BP 94/1.0, also including five reference strains of *F. proliferatum* (*Fig. 2*). The *F. proliferatum* clade was distributed among the Asian group of FF species complex, and the topology of phylogenetic trees constructed by different methods was similar and consistent with the one reconstructed previously [1]. The resulting phylogenetic tree demonstrates significant genetic diversity within the *F. proliferatum* strains. The clades contained both the analyzed and reference strains, exhibiting no correlation between grouping and geographic or substrate source. Previous studies [8, 42, 43] have also observed a comparable categorization of *F. proliferatum* due to the substantial intraspecific variability of the species, irrespective of strain origin.

Specific PCR analysis demonstrated the presence of only one idiomorph at the MAT locus per *F. proliferatum* strain genotype, yielding an 8 : 4 ratio of MAT1-1 to MAT1-2 idiomorphs among the strains examined. The MAT locus is represented exclusively by the MAT1-2 idiomorph in the strains from maize and exclusively by the MAT1-1 idiomorph in the strains

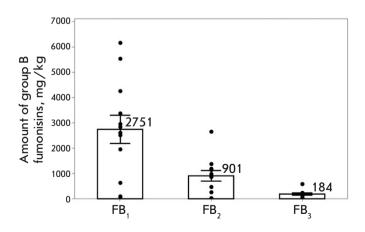



Fig. 3. Fumonisins production by *F. proliferatum* strains (autoclaved rice, 25°C, 14 days, in the dark). Presented are the mean values and the confidence intervals at a significance level of p < 0.05. The dots indicate the values for individual strains

from oat. The MAT locus in the strains from wheat exhibited a 4 : 2 ratio of MAT1-1 to MAT1-2 alleles.

The disproportionate prevalence of alternative mating types within the *F. proliferatum* populations appears to correlate with a decreased frequency of sexual reproduction in the wild, consequently limiting genetic diversity. Furthermore, this impacts the pathogen's capacity to adapt to fluctuating environmental conditions. The ratio of *F. proliferatum* strains isolated from cultivated plants with different idiomorphs at the MAT locus has been previously shown to vary [8, 42]. However, the *F. proliferatum* strains isolated from durum wheat grain in Argentina were characterized by an equal frequency of alternative alleles of the MAT locus, which allowed researchers to predict a high probability of detecting the sexual stage of the fungus in wheat fields [42].

## Profile of the mycotoxins produced by *F. proliferatum*

All five mycotoxins (BEA, MON,  $FB_1$ ,  $FB_2$ , and  $FB_3$ ) were detected in extracts from rice grains inoculated by *F. proliferatum* strains. However, these were absent in the control.

All strains exhibited significant FUM production ranging from 100 to 9424 mg/kg. FB<sub>1</sub> proved to be the predominant mycotoxin, amounting to 53–82% of total FUM. The mycotoxins FB<sub>2</sub> and FB<sub>3</sub> were found to be present in lower quantities, amounting to 9–28% and 2–39%, respectively. Among all the strains tested, MFG 58590 — isolated from oat grain originating in Primorsky Krai , Russia — produced the maximum amount of FUM. A marked reduction in total FB<sub>1</sub>, FB<sub>2</sub>, and FB<sub>3</sub> was observed in the strains MFG 92501 and MFG 60803 (100 and 135 mg/kg, respectively), compared to the other strains (1 077–7 077 mg/kg) (*Fig. 3*).

The BEA production in all the *F. proliferatum* strains was similarly high, ranging between 64 and 455 mg/kg. The MON production proved substantially less than that of the four other mycotoxins, displaying variability from 12 to 6565  $\mu$ g/kg. The analysis of strain MFG 92501 indicated no presence of MON within its mycotoxin profile.

The predominant FUM in the mycotoxin profile of F. proliferatum is FB,, a characteristic independent of strain substrate origin [12, 37, 38, 44]. Our study has not revealed any statistically significant correlation between strain substrate origin and mycotoxin production (Table 3). The growth and fumonisin production of F. proliferatum are known to be affected by a multitude of abiotic and biotic factors [45-47]. The extensive host range of F. proliferatum demonstrates its considerable adaptive capacity, partly attributable to the synthesis of secondary metabolites. The ability to produce mycotoxins was found to be unrelated to the host plant from which F. proliferatum was isolated [23]. Infection of wheat with strains of this fungus isolated from different hosts resulted in the accumulation of FB, and BEA in the grain [23], despite the fact that the strains initially differed in toxin-producing ability, but the detected amount of FB, in infected wheat was much lower than that usually found in maize. The F. proliferatum strains isolated from maize grain were previously shown to possess a more variable FB, production ability than strains isolated from wheat grain [36]. The function of FUM, specifically FB, as a pathogenicity factor in F. proliferatum remains a subject of debate [48]. A cluster of genes (FUM) responsible for the biosynthesis of these mycotoxins has been identified in FUM producing Fusarium fungi [1, 11]. In contrast to FUM19, the genes FUM1, FUM6, FUM8, and FUM21 were demonstrated to be essential for FUM synthesis in the F. proliferatum strains. The deletion of these genes leads not only to the loss of the ability of fungus to synthesize these mycotoxins, but also to a decrease in its aggressiveness against the host plant [49]. At the same time, it was recently discovered that *F. proliferatum* strains isolated from garlic could produce FUM *in vitro* but did not necessarily produce them *in planta* [38]. Furthermore, fungal exposure to host plant metabolites during colonization may influence mycotoxin production and concentration [50]. Although *F. proliferatum* inhabits the mycobiota of Eurasian wheat, barley, and oat, elevated fumonisin amounts in their grains are atypical, contrasting with the common detection of beauvericin and the less frequent detection of moniliformin [30, 51, 52]. Presumably, wheat grain is a less suitable substrate for FUM accumulation than maize [23, 44].

## CONCLUSION

The phylogenetic study of *F. proliferatum* strains isolated from three cereal crops grown on the territory of the Russian Federation demonstrated significant intraspecific heterogeneity, independent of the geographical and substrate strain origin. Such an uneven distribution of *F. proliferatum* strains with differing mating types is likely to diminish the significance of sexual reproduction in the life cycle of this heterothallic fungus. In conjunction with environmental factors, the considerable mycotoxin production potential of *F. proliferatum* suggests a high risk of grain contamination, thus necessitating systematic monitoring.

This project was supported by a grant from the Russian Science Foundation (project No. 19-76-30005).

#### REFERENCES

- 1. Yilmaz N., Sandoval-Denis M., Lombard L., Visagie
- C.M., Wingfield B.D., Crous P.W. // Persoonia. 2021. V. 46. P. 129–162.
- 2. Leslie J.F. // Canadian J. Botany. 1995. V. 7. P. 282-291.
- 3. O'Donnell K., Nirenberg H.I., Aoki T., Cigelnik E. // Mycoscience. 2000. V. 41. P. 61–78.
- 4. Kvas M., Marasas W.F.O., Wingfield B.D., Wingfield M.J., Steenkamp E.T // Fungal Diversity. 2009. V. 34. P. 1–21.
- Wigmann E.F., Behr J., Vogel R.F., Niessen L. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 5323-5337.
- Brown D.W., Proctor R.H. // Fungal Genetics Biol. 2016.
   V. 89. P. 37–51.
- Niehaus E.-M., Münsterkötter M., Proctor R.H., Brown D.W., Sharon A., Idan Y., Oren-Young L., Sieber C. M., Novák O., Pěnčík A., et al. // Genome Biol. Evol. 2016. V. 8. № 11. P. 3574–3599.
- 8. Jurado M., Marín P., Callejas C., Moretti A., Vázquez C., González-Jaén M.T. // Food Microbiol. 2010. V. 27. № 1. P. 50–57.
- Proctor R.H., van Hove F., Susca A., Stea G., Busman M., van der Lee T., Waalwijk C., Moretti A., Ward T.J. // Mol. Microbiol. 2013. V. 90. № 2. P. 290–306.

- Stępień L., Koczyk G., Waśkiewicz A. // Fungal Biol. 2011. V. 115. № 2. P. 112–123.
- 11. Proctor R.H., Desjardins A.E., Moretti A. The role of plant pathology in food safety and food security / Eds Strange R., Gullino M. Dordrecht: Springer, 2010. V. 3. P. 97–111.
- 12. Qiu J., Lu Y., He D., Lee Y.W., Ji F., Xu J., Shi J. // Plant Disease. 2020. V. 104. № 8. P. 2193–2201.
- Yu H., Hwang S.F., Strelkov S.E. // Pathogens. 2024.
   V. 13. № 5. P. 407.
- 14. Mondani L., Chiusa G., Pietri A., Battilani P. // Postharvest Biol. Technol. 2021. V. 173. Art. 111407.
- Xie L., Wu Y., Duan X., Li T., Jiang Y. // Microbiol. Res. 2022. V. 256. Art. 126952.
- Duan Y.N., Jiang W.T., Zhang R., Chen R., Chen X.S., Yin C.M., Mao Z.Q. // Plant Dis. 2022. V. 106. № 11. P. 2958–2966.
- López-Moral A., Antón-Domínguez B.I., Lovera M., Arquero O., Trapero A., Agustí-Brisach C. // Sci. Repts. 2024.
   V. 14. Art. 5720.
- Gaige A.R., Todd T., Stack J.P. // Plant Dis. 2020. V. 104.
   № 8. P. 2102–2110.
- 19. Koo Y.M., Ahsan S.M., Choi H.W. // Mycobiology. 2023.

V. 51. № 3. P. 186–194.

- 20. Munkvold G.P. // Eur. J. Plant Pathol. 2003. V. 109. P. 705–713.
- 21. Desjardins A.E., Busman M., Proctor R.H., Stessman R. // Food Addit. Contam. Part A. 2007. V. 24. № 10. P. 1131–1137.
- 22. Molnár O. // Eur. J. Plant Pathol. 2016. V. 146. P. 699-703.
- 23. Guo Z., Pfohl K., Karlovsky P., Dehne H.W., Altincicek B. // PLoS One. 2018. V. 13. № 9. Art. e0204602.
- 24. Gaige A.R., Giraldo M., Todd T., Stack J.P. // Canadian J. Plant Pathol. 2019. V. 41. № 2. P. 242–250.
- 25. Booth C. The genus *Fusarium*. Kew: Commonwealth Mycological Institute, 1971. 237 p.
- 26. Martin S.H., Wingfield B.D., Wingfield M.J., Steenkamp E.T. // Fungal Genet. Biol. 2011. V. 48. P. 731–740.
- Leslie J.F., Klein K.K. // Genetics. 1996. V. 144. P. 557– 567.
- 28. Stankovic S., Levic J., Petrovic T., Logrieco A., Moretti A. // Eur. J. Plant Pathol. 2007. V. 118. P. 165–172.
- 29. Guo Z., Pfohl K., Karlovsky P., Dehne H.-W., Altincicek B. // Agricult. Food Sci. 2016. V. 25. P. 138–145.
- 30. Senatore M.T., Prodi A., Tini F., Balmas V., Infantino A., Onofri A., Cappelletti E., Oufensou S., Sulyok M., Covarelli L. // J. Sci. Food Agriculture. 2023. V. 103. № 9. P. 4503–4521.
- 31. Stanković S., Lević J., Krnjaja V. // Biotechnol. Animal Husbandry. 2011. V. 27. № 3. P. 631–641.
- 32. Cendoya E., Chiotta M.L., Zachetti V., Chulze S.N., Ramirez M.L. // J. Cereal Sci. 2018. V. 80. P. 158–166.
- Kononenko G.P., Burkin A.A., Zotova Ye.V. // Veterinary Sci. Today. 2020. V. 2. P. 139–145.
- 34. Kamle M., Mahato D.K., Devi S., Lee K.E., Kang S.G., Kumar P. // Toxins. 2019. V. 11. № 6. Art. 328.
- 35. Kononenko G.P., Burkin A.A., Zotova Ye.V., Smirnov A.M. // Rossiyskaya sel'skokhozyaystvennaya nauka. 2019.
  V. 3. P. 28–31. (In Russian)
- 36. Tancic S., Stankovic S., Levic J., Krnjaja V., Vukojevi J. // Genetika. 2012. V. 44. № 1. P. 163–176.
- 37. Gálvez L., Urbaniak M., Waśkiewicz A., Stępień Ł., Palmero D. // Food Microbiol. 2017. V. 67. P. 41–48.

- 38. Gasser K., Sulyok M., Spangl B., Krska R., Steinkellner S., Hage-Ahmed K. // Postharvest Biol. Technol. 2023. V. 200. Art. 112312.
- O'Donnell K., Laraba I., Geiser D.M. Fusarium wilt. Methods in molecular biology. New York: Humana, 2022. P. 1–20.
- 40. Steenkamp E.T., Wingfield B.D., Coutinho T.A., Zeller K.A., Wingfield M.J., Marasas W.F.O., Leslie J.F. // Appl. Environ. Microbiol. 2000. V. 66. P. 4378–4382.
- 41. Malachová A., Sulyok M., Beltrán E., Berthillera F., Krska R. // J. Chromatography A. 2014. V. 1362. P. 145–156.
- 42. Palacios S.A., Susca A., Haidukowski M., Stea G., Cendoya E., Ramírez M.L., Chulze S.N., Farnochi M.C., Moretti A., Torres A.M. // Internat. J. Food Microbiol. 2015. V. 201. P. 35–41.
- Wang L., Liu Q., Ge S., Liang W., Liao W., Li W., Jiao G., Wei X., Shao G., Xie L., et al. // Front. Microbiol. 2022.
   V. 13. Art. 1004454.
- 44. Busman M., Desjardins A.E., Proctor R.H. // Food Addit. Contam. Part A. 2012. V. 29. № 7. P. 1092–1100.
- 45. Cendoya E., Pinson-Gadais L., Farnochi M.C., Ramirez M.L., Chéreau S., Marcheguay G., Ducos C., Barreau C., Richard-Forget F. // Internat. J. Food Microbiol. 2017. V. 253. P. 12–19.
- 46. Vismer H.F., Shephard G.S., van der Westhuizen L., Mngqawa P., Bushula-Njah V., Leslie J.F. // Internat. J. Food Microbiol. 2019. V. 296. P. 31–36.
- 47. Dong T., Qiao S., Xu J., Shi J., Qiu J., Ma G. // Toxins. 2023. V. 15. № 4. Art. 260.
- 48. Xie L., Wu Y., Wang Y., Jiang Y., Yang B., Duan X., Li T. // Environ. Poll. 2021. V. 288. Art. 117793.
- 49. Sun L., Chen X., Gao J., Zhao Y., Liu L., Hou Y., Wang L., Huang S. // Toxins. 2019. V. 11. № 6. Art. 327.
- 50. Lalak-Kańczugowska J., Witaszak N., Waśkiewicz A., Bocianowski J., Stępień Ł. // Internat. J. Mol. Sci. 2023. V. 24. № 3. Art. 3002.
- 51. Fraeyman S., Croubels S., Devreese M., Antonissen G. // Toxins. 2017. V. 9. № 7. Art. 228.
- 52. Gavrilova O.P., Gagkaeva T.Yu., Orina A.S., Gogina N.N. ∥ Dokl. Biol. Sci. 2023. V. 508. № 1. P. 9–19.