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ABSTRACT Mitogen-activated protein kinases, ERK1/2 (MAPK3/1), play a key role in the regulation of cell 
growth, differentiation, and apoptosis. We have previously presented evidence proving that activation of 
the ERK1/2 axis in cancer cells following the administration of therapeutics leads to the overexpression of 
growth factor receptors and drug resistance. Recently, we have proposed a new bioinformatic technique that 
enables direct construction of interactome network-based molecular pathways for gene products of interest, 
as well as quantitation of their activation levels using high-throughput gene expression data. In this study, 
we, for the first time, algorithmically constructed ERK1/2 molecular pathways and investigated how their ac-
tivation levels (PALs) affect survival and responsiveness to targeted drugs at the pan-cancer level based on 
transcriptomic data. We examined a total of 11 287 human tumor profiles from 31 types of cancer, drawn from 
53 of our previously published and other literature datasets, looking at patient survival and clinical response 
to 29 chemo- and targeted therapy regimens. We found that activation of the ERK1/2 pathways has different 
prognostic significance depending on cancer type. In glioblastoma, sarcoma, lung, kidney, bladder, gastric, co-
lon, and several other cancer types, ERK pathway activation was associated with worse survival. In contrast, 
the same phenomenon was associated with a better chance of survival in HER2+, luminal A and luminal B 
breast cancer, and uterine corpus cancer. These trends were consistent with treatment response analysis. At 
the same time, we found significantly worse associations with the expression levels of individual MAPK1 and 
MAPK3 genes: hence, ERK1/2 pathway activation levels can be considered putative biomarkers for predicting 
clinical outcomes and selecting new personalized treatment strategies, such as the use of MAPK inhibitors.
KEYWORDS ERK1 (MAPK3), ERK2 (MAPK1), gene expression in cancer, ERK molecular pathway activation 
in oncogenesis, cancer survival biomarkers.
ABBREVIATIONS MAPK – mitogen-activated protein kinase; PAL – pathway activation level; CNR – case-to-
normal ratio; ARR – activation/repressor role; OS – overall survival; PFS – progression-free survival; HR – 
hazard ratio.

INTRODUCTION
Cancer is the second most common cause of death 
in the world after cardiovascular diseases. According 
to the World Health Organization (WHO), there were 
19.3 million new cases of cancer and 10 million deaths 
from cancer in 2020, accounting for about 16% of all 

deaths worldwide [1]. Cancer incidence statistics have 
been steadily increasing over the past two decades, 
and cases are projected to rise to 28.4 million in 2040, 
a 47% increase from 2020 [2]. These trends emphasize 
the need for increased prevention, early diagnosis, 
and effective cancer treatment strategies.
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Notwithstanding the medical advances in cancer di-
agnosis and treatment and the availability of targeted 
therapies, cancer treatment efficacy remains insuffi-
cient. It is not uncommon for individual cases of ad-
vanced tumors or even entire cancer types to respond 
poorly to clinically approved chemotherapies and tar-
geted therapies, and, conversely, many cases of indi-
vidual responses to unlisted drugs or combinations of 
drugs have been reported [3]. One of the reasons for 
this is the complexity of the molecular mechanisms 
of cancer, which makes the development of effective 
universal treatment strategies a challenge. Therefore, 
particular attention is being focused on research into 
the key molecular pathways that regulate the key cel-
lular processes in oncogenesis. In particular, we know 
that signaling axes such as EGFR, PI3K/AKT/mTOR, 
RAS/RAF/MEK/ERK, and JAK/STAT play a key role 
in the regulation of cell growth and division. However, 
their complex interactions and the presence of par-
allel signaling pathways make it difficult to develop 
long-term effective targeted therapeutic regimens. 
In addition, abnormal regulation of these pathways is 
often associated with treatment resistance and tumor 
progression [4–6].

Of particular interest are the mitogen-activated 
protein kinases (MAPK) ERK1 and ERK2 (encod-
ed by the MAPK3 and MAPK1 genes, respectively), 
which are activated in response to the activation of 
the RAS-RAF-MEK-ERK signaling axis that plays 
a key role in tumor cell survival, growth, and pro-
liferation. This axis is closely related to the progres-
sion and metastasis of various types of human can-
cers. Activating mutations in the genes of upstream 
receptor tyrosine kinases or in the genes encoding 
the RAS, RAF, MEK and ERK proteins can lead to 
aberrant activation of ERK1/2 in tumors and, taken 
together, constitute the most frequent group of muta-
tions in human cancer cells. In general, it is believed 
that 30–96% of all tumors are characterized by hy-
peractivation of the RAS/RAF/MEK/ERK signaling 
axis [7]. ERK1/2, as its downstream component, can 
be hyperactivated due to uncontrolled activation of 
receptor tyrosine kinase genes or mutations in the 
RAS, RAF and MEK genes [8]. Specific inhibitors of 
the EGFR, BRAF, KRAS, and MEK proteins are in-
cluded in many standards of anticancer therapy and 
have proved effective in the therapy of cancers carry-
ing oncogenic mutations in this axis. However, cancer 
cells often grow resistance to such inhibitors and ERK 
reactivation is believed to be one of the reasons for 
such resistance [8, 9].

ERK1/2 proteins play their oncogenic role through 
abnormal phosphorylation of a wide range of sub-
strates, thereby regulating a variety of tumor-related 

biological processes, including cell proliferation, dif-
ferentiation, migration, and angiogenesis [10]. ERK1/2 
kinases localize at the crossroads of various signaling 
pathways, since they are a key node in activating the 
emergency survival program of tumor cells after the 
application of receptor tyrosine kinase inhibitors and 
standard chemotherapy [9].

Hence, these kinases appear to be promising tar-
gets for antitumor therapy, in combination with ex-
isting antitumor drugs to enhance their effica-
cy. Therefore, the search for groups of patients in 
whom the corresponding signaling is elevated may 
be promising in terms of using specific inhibitors of 
these MAPK kinases. One approach to identifying 
such patient groups involves assessing the expression 
levels of these genes. Variability in gene expression 
among tumors from different patients has facilitat-
ed the adoption of personalized treatment strategies 
[11]. However, the advent of omics technologies makes 
it possible to simultaneously examine thousands of 
genes and other biomarkers [12]. Additionally, vari-
ous analytical tools allow researchers to summarize 
results and identify signaling or the biochemical path-
ways in which the products of these genes are in-
volved, based on data in the literature (functional 
enrichment). Functional enrichment tools (e.g., over-
representation analysis and functional class scoring 
(FCS), commonly used in the analysis of differen-
tial gene expression) do not account for the fact that 
genes operate within complex molecular networks, 
and their dysregulation in cancer can simultaneously 
disrupt the regulation of multiple pathways. Different 
components of a molecular pathway can have dis-
tinct functional roles. For example, increased expres-
sion of an inhibitory component may suppress the 
pathway, while activation of a stimulatory component 
may enhance it. Furthermore, the pathways are often 
regulated by positive and negative feedback loops, 
which significantly influence the biological outcomes 
resulting from pathway activation or inhibition [13, 
14]. To address these challenges, a method was pro-
posed to quantitatively assess the activation level of 
an entire molecular pathway, rather than individu-
al genes, considering the pathway’s architecture and 
the roles of its constituent components in its activa-
tion or suppression. An algorithm was developed for 
its automatic calculation [14]. The classical algorithm 
for calculating the molecular pathway activation level 
(PAL) involves recursive annotation of each node in a 
given pathway as an activator or repressor, based on 
the molecular architecture and the nature of each in-
teraction [14]. PAL effectively smooths biases arising 
from data obtained on different platforms and reduc-
es batch effects [15]. Its values have been used to tell 
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apart normal tissues from tumor ones [16] and predict 
therapeutic responses in colorectal, renal, and gastric 
cancer [17–20]. In addition to the classical PAL cal-
culation, a recently proposed approach constructs the 
architecture of a molecular pathway as a network of 
interacting molecules centered around a key node: the 
central gene. These pathways, referred to as genecen-
tric pathways, are constructed based on the human 
interactome model and include the maximum num-
ber of interactions starting from the central node and 
leading to every other node in the pathway. PAL of 
genecentric pathways has demonstrated prognostic 
and diagnostic value, making it a reliable biomarker 
for screening, prognosis, and therapy prediction [21, 
22].

In this study, we for the first time algorithmically 
constructed the ERK1 and ERK2 genecentric molecu-
lar pathways based on the interactome model previ-
ously developed by our group [21]. We sought to in-
vestigate the associations of their PALs with survival 
and responsiveness to targeted drugs at a cancer-
wide level.

We found that activation of the ERK1/2 pathway 
has different prognostic values depending on the 
type of cancer. In glioblastoma, sarcoma, lung, kid-
ney, bladder, gastric, colorectal, and several other 
cancer types, ERK pathway activation was associat-
ed with a worse survival chance. In contrast, it was 
associated with a better chance of survival in the 
HER2+, luminal A and luminal B breast cancer, and 
uterine corpus cancer. These results are consistent 
with those from the treatment response analysis. In 
contrast, we found significantly weaker associations 
with the expression levels of the individual MAPK1 
and MAPK3 genes. Hence, the levels of ERK1/2 
pathway activation can be considered putative bio-
markers for predicting clinical outcomes and select-
ing new personalized treatment strategies such as 
the use of MAPK inhibitors.

EXPERIMENTAL

RNA expression datasets

The Cancer Genome Atlas (TCGA) project dataset. The 
RNA sequencing data of solid tumors (STAR counts) 
and matching normal tissues from the TCGA pro-
ject were downloaded from the NCI Genomic Data 
Commons portal [23, 24], along with associated meta-
data with information on survival, progression, the 
therapy used, and response to therapy. Only prima-
ry tumor samples of cancer types with 100 or more 
samples were evaluated. In addition, data from the 
TCGA READ (rectal adenocarcinoma) and COAD 

(colon adenocarcinoma) projects were combined into 
the Colorectal Cancer group; similarly, data from the 
KIRC (renal clear cell cancer) and KIRP (renal pap-
illary cancer) projects were combined into the Renal 
Cell Carcinoma group. In addition, gliomas and glio-
blastomas from the TCGA-GBM and TCGA-LGG pro-
jects were pooled and reclassified according to the up-
dated WHO classification as shown by Zakharova et 
al. [25]. The TCGA-BRCA breast cancer dataset was 
divided into subgroups according to the PAM50 sig-
nature [26] due to the high heterogeneity of tumors 
in this localization. Five molecular subtypes were de-
rived: basal, HER2+, luminal A, luminal B, and normal 
breast cancer. In the end, a total of 24 cancer types 
with a total of 8 427 tumor samples were included in 
the analysis (Table 1).

Overall survival (OS) and progression-free survival 
(PFS) data were assessed in parallel in our analysis. 
Wherever possible, datasets from the TCGA project 
were also tapped to analyze the response to therapy 
according to the RECIST criteria [27] (Table 1). For 
reasons of uniformity and compatibility, the follow-
ing selection criteria were applied to the TCGA data. 
First, groups of patients with the same type of ther-
apy, at least 20 patients for each cancer type, were 
included in the analysis. Second, if the same patient 
received multiple lines of the same therapy, the best 
response according to the RECIST criteria was se-
lected for further analysis. Some patients received 
up to eight lines of therapy, but only the responses 
to lines 1–3 were included in the analysis, because 
by the time the later lines of therapy were admin-
istered a significant change in the molecular profile 
of the tumor may have occurred and, therefore, the 
use of transcriptomic data obtained earlier may be 
questionable. Finally, only RECIST-defined response 
groups consisting of at least three patients were con-
sidered, for statistical reasons. As a result, data on the 
response to therapy by patients with 10 cancer types 
were included (Table 2). 

Gene Expression Omnibus (GEO) and Tumor 
Alterations Relevant for GEnomics-driven Therapy 
(TARGET) repository datasets. The datasets included 
were selected from the previous collection of clini-
cally annotated gene expression datasets with a vali-
dated quality of the expression profiles [28]. The sol-
id tumor RNA sequencing data (STAR-counts) from 
the TARGET project were downloaded from the 
NCI Genomic Data Commons portal [29]. Microarray 
gene expression datasets were extracted from the 
GEO portal [30, 31]. The TARGET-AML dataset (for 
acute myeloid leukemia) was divided into two sub-da-
tasets based on the presence or absence of busul-
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fan and cyclophosphamide in the treatment regi-
men. Additionally, the analysis included data from 
the TCGA project for LGG and UCEC and the com-
bined dataset for lung cancer (LUSC + LUAD) where 
the information was extracted from the collection by 
Borisov et al. [28]. A total of 26 additional datasets of 
nine cancer types, with a total of 2 736 tumor samples, 
were included (Table 3).

Original clinical datasets. We also included propri-
etary clinically annotated RNA sequencing datasets 
previously obtained in our laboratory and published 
elsewhere. When available, the treatment outcomes 
were assigned according to the RECIST criteria [27]. 

The following original datasets were included:
1)  patients with glioblastoma treated with temozolo-

mide, annotated with progression-free survival 
data (n = 49) [32, 33];

2)  patients with gastric cancer from a previously pub-
lished clinical investigation [18] who received ramu-
cirumab as monotherapy (n = 7), or in combination 
with paclitaxel (n = 6) or the FOLFIRI regimen 
(n = 2). Response to therapy as well as progres-
sion-free survival was assessed;

3)  patients with multiple myeloma (n = 60) who re-
ceived complex chemotherapy in several regimens, 
each including bortezomib. The response to therapy 
was registered [34]. 

Table 1. Statistics for the TCGA RNA expression samples included in the analysis

Cancer type TCGA project ID Total number 
of samples

Number of samples 
with survival data 

(OS/PFS)

Number of samples 
with response 
to therapy data

Astrocytoma, IDH-mutant. Grade 2 Part of LGG + GBM 110 110/110 22

Basal breast cancer Part of BRCA 198 198/198 0

Colorectal cancer COAD + READ 624 619/624 120

Glioblastoma, IDH-wildtype Part of LGG + GBM 206 204/206 24

HER2+ breast cancer Part of BRCA 124 124/124 0

Luminal A breast cancer Part of BRCA 230 229/230 0

Luminal B breast cancer Part of BRCA 515 514/515 0

Renal cell carcinoma KIRP + KIRC 823 822/823 15

Urothelial bladder carcinoma BLCA 406 403/406 92

Cervical squamous cell carcinoma 
and endocervical adenocarcinoma CESC 304 304/304 77

Esophageal carcinoma ESCA 184 184/184 32

Head and neck squamous cell 
carcinoma HNSC 520 518/520 77

Hepatocellular carcinoma LIHC 368 367/368 24

Lung adenocarcinoma LUAD 516 507/516 98

Lung squamous cell carcinoma LUSC 501 495/501 61

Pancreatic adenocarcinoma PAAD 178 178/178 74

Pheochromocytoma and 
paraganglioma PCPG 179 179/179 4

Prostate adenocarcinoma PRAD 497 495/497 40

Sarcoma SARC 259 259/259 58

Cutaneous melanoma SKCM 103 103/105 14

Stomach adenocarcinoma STAD 412 403/412 115

Thyroid cancer THCA 505 505/505 12

Thymoma THYM 120 119/120 3

Uterine corpus endometrial 
carcinoma UCEC 545 544/545 60
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Construction of ERK1/2 molecular pathways and 
assessment of pathway activation level (PAL) values
The ERK1 (MAPK3) and ERK2 (MAPK1) molecular 
pathways were algorithmically reconstructed as previ-
ously reported in [21]. The human interactome model 
was constructed using the OncoboxPD collection of 
published molecular pathways [35] as a molecular in-
teraction database. In total, the architecture of 50 178 
distinct molecular pathways was used to build the in-
teractome model. All pathway graphs were merged 
based on overlapping gene products. The included 
genes form a connected network, meaning that at 
least one undirected edge exists between any pair of 
gene products. As a result, a directed graph was ob-
tained, where nodes represent genes or metabolites, 
and edges correspond to the known pairwise molec-
ular interactions included in the OncoboxPD collec-
tion. The interactome model was visualized using the 
Gephi software and the ForceAtlas2 algorithm.

For each ERK1 and ERK2 protein, genecentric al-
gorithmic molecular pathways were constructed, in-
cluding central nodes (ERK1 and ERK2, respectively) 
and gene products with first-order interactions with 
the corresponding central nodes. The following types 
of interactions were considered: “activation”, “cou-
pling”, “inhibition”, “phosphorylation”, “dissociation”, 
“repression”, “dephosphorylation”, “binding/associa-
tion”, and “ubiquitination”.

The pathway activation level (PAL) is an aggregate 
quantitative and qualitative characterization of the 
changes in the expression level of the genes involved 
in a particular molecular pathway [36]. The PAL val-
ues were calculated as follows: 

PALp = 100 × ∑n(ARRn,p × lg(CNRn))/∑n|ARRn,p|,

where PALp is the level of activation of the pathway 
p; CNRn is the ratio of the expression of gene n in the 
tested sample to its average level in the control group; 
and ARR is the role (activator/repressor) played by 
the given gene product in the p pathway. ARR can 
take on the following values: 
-1: when the n gene product is a repressor of the p 
pathway;
-0.5: when the n gene product is mainly a repressor;
0: when the role of the n gene product in the p path-
way is neutral, uncertain or ambiguous;
0.5: when the n gene product is predominantly an ac-
tivator;
1: when the gene product n is an activator. 

The ARR values were assigned algorithmically 
based on the pathway architecture and central node 
position [14], and PAL calculations were performed 
using the Python library “oncoboxlib” [14].

If data were downloaded in non-normalized form, 
normalization of gene expression was performed us-

Table 2. Sufficient TCGA tumor groups with available data on RECIST treatment outcomes

Cancer type Chemotherapy1 Number of patients  
in the response group2

Astrocytoma, IDH-mutant. Grade 2 Temozolomide SD (n = 12); R (n = 3)

Colorectal cancer 5-Fluorouracil, leucovorin, 
oxaliplatin NR (n = 6); R (n = 39)

Glioblastoma, IDH-wildtype Temozolomide SD (n = 12); R (n = 4)

Urothelial bladder carcinoma Cisplatin, gemcitabine SD (n = 4); R (n = 33); NR (n = 12)

Cervical squamous cell carcinoma and 
endocervical adenocarcinoma Cisplatin R (n = 49); NR (n = 6)

Head and neck squamous cell carcinoma Cisplatin R (n = 35); NR (n = 3)

Thyroid cancer Gemcitabine SD (n = 4); R (n = 23); NR (n = 25)

Sarcomas Docetaxel, gemcitabine R (n = 12); NR (n = 9)

Stomach adenocarcinoma 5-Fluorouracil R (n = 17); NR (n = 16)

Uterine corpus endometrial carcinoma Paclitaxel, carboplatin R (n = 35); NR (n = 5)

1Type of chemotherapy used in a patient cohort;
2R – responders (total number of patients with RECIST v1.1 Complete Response and Partial Response outcomes);
NR – non-responders (number of patients with RECIST v1.1 Progressive Disease outcome);
SD – patients with Stable Disease outcome according to RECIST v1.1 classification.
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Table 3. Datasets added from the collection of clinically annotated tumor expression profiles

Cancer type Dataset ID Therapy1 Number of 
samples

Number of 
responder and 
non-responder 
patients accord-

ing to [28]2

Breast cancer with different 
hormonal and HER2 statuses GSE18728 Docetaxel, capecitabine 61 23R, 38NR

Breast cancer with different 
hormonal and HER2 statuses GSE20181 Letrozole 52 37R, 15NR

Breast cancer with different 
hormonal and HER2 statuses GSE20194 Paclitaxel, 5-fluorouracil, 

cyclophosphamide, doxorubicin 52 11R, 41NR

Breast cancer with different 
hormonal and HER2 statuses GSE20271 Paclitaxel, 5-fluorouracil, adriamycin, 

cyclophosphamide 84 18R, 66NR

Breast cancer GSE22358 Docetaxel, capecitabine 122 116R, 6NR
Breast cancer GSE23988 Docetaxel, capecitabine 61 20R, 41NR

Breast cancer with different 
hormonal and HER2 statuses GSE25066 Neoadjuvant therapy with taxanes and 

anthracyclines 508 118R, 389NR

Breast cancer GSE32646 Paclitaxel, 5-fluorouracil, epirubicin 
cyclophosphamide 115 27R, 88NR

Breast cancer GSE37946 Trastuzumab 50 27R, 23NR

Multiple myeloma GSE39754
Vincristine, adriamycin, dexamethasone 

followed by autologous stem cell 
transplantation

136 74R, 62NR

Breast cancer with different 
hormonal and HER2 statuses GSE41998 Neoadjuvant therapy with doxorubicin, 

cyclophosphamide, paclitaxel 124 90R, 34NR

Breast cancer GSE42822 Docetaxel, 5-fluorouracil, epirubicin, 
cyclophosphamide, capecitabine 91 38R, 53NR

Breast cancer with different 
hormonal and HER2 statuses GSE50948 Paclitaxel, doxorubicin, cyclophosphamide, 

methotrexate, trastuzumab 156 53R, 103NR

Acute myeloid leukemia GSE5122 Tipifarnib 57 13R, 44NR
Breast cancer GSE59515 Letrozole 75 51R, 24NR

Multiple myeloma GSE68871 Bortezomib, thalidomide, dexamethasone. 118 69R, 49NR
Breast cancer GSE76360 Trastuzumab 48 42R, 6NR

Multiple myeloma GSE9782 Bortezomib 169 85R, 84NR
Non-small cell lung cancer (lung 
adenocarcinoma + squamous cell 

lung cancer + other types)
GSE207422* Anti-PD-1 immunotherapy 24 (8 + 12 

+ 4)  9R, 15NR

B-cell acute lymphoblastic 
leukemia TARGET10 Vincristine sulfate, carboplatin, 

cyclophosphamide, doxorubicin 98 30R, 68NR

Pediatric acute myeloid leukemia TARGET20 
_Busulfan

Polychemotherapy** + Busulfan, 
cyclophosphamide 54 31R, 23NR

Pediatric acute myeloid leukemia TARGET20_
NoBusulfan Polychemotherapy** 142 62R, 80NR

Williams tumor 
(nephroblastoma) TARGET50 Vincristine sulfate, cyclosporine, 

cytarabine, daunorubicin 122 36R, 86NR

Lung cancer TCGA_LC Paclitaxel, optional: cisplatin/carboplatin, 
rheolysin 35 22R, 13NR

Low-grade glioma TCGA_LGG Temozolomide, optionally: mibefradil 131 100R, 31NR

Endometrioid adenocarcinoma TCGA_
UCEC

Paclitaxel, optional: cisplatin/cisplatin, 
doxorubicin 52 45R, 7NR

1 Type of chemotherapy, targeted therapy, immunotherapy, or hormone therapy used in a patient cohort.
2 “R” stands for treatment responders; “NR”, for non-responders.
*This dataset was not annotated in [28]. It includes information about patients’ response to immunotherapy according to 
the RECIST criteria and, therefore, was added to the analysis. 
**Polychemotherapy regimen included: asparaginase, cytarabine, daunorubicin hydrochloride, etoposide, gemtuzumab 
ozogamicin, and mitoxantrone hydrochloride. 
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ing DeSeq2 [37]. An artificial gene expression profile 
obtained by averaging all gene expression data in the 
study cohort was used as a reference (control) gene 
expression profile for each individual dataset.

Statistical tests
Statistical analyses were performed in R, version 3.4.2 
[38]. The PAL or central gene expression level values 
were divided into groups with a high and low PAL 
score/gene expression level, depending on whether 
the score was above or below the optimal value corre-
sponding to the minimum p-value of the log-rank test 
calculated using the “surv_cutpoint” function of the R 
package “surviminer” [39]. 

Survival associations were assessed using the 
Kaplan–Meier method and log-rank test to determine 
the statistical significance of the difference between 
the two groups; the hazard ratio (HR, 95% CI) was 
calculated using the Cox regression model to assess 
the differences in survival chances between the com-
pared groups using the R packages “survival” [40] and 
“survminer” [39]. Overall survival (OS) was calculated 
to the date of death or to the date of the last follow-
up; patients who were alive at the time of last follow-
up were censored. Progression-free survival (PFS) was 
calculated up to the date of progression, death, or last 
follow-up. Surviving patients, as well as patients with-
out progression at the date of the last follow-up, were 
censored. Hazard ratios with p < 0.05 and 95% CI not 
including 1 were considered statistically significant. 

In the analysis of the responsiveness to the thera-
py, when no “responder” nor “non-responder” marks 
were available in the dataset, the patients with the 
RECIST Complete Response and Partial Response out-
comes were considered responders, and patients with 
the Progressive Disease label were considered non-
responders, whereas patients with the Stable Disease 
outcome were considered separately.

Normality of distribution was assessed using the 
Shapiro–Wilk test; homogeneity of variance, using 
the Levene’s test. If the number of compared groups 
exceeded 2, ANOVA or the Kruskal–Wallis test was 
used depending on whether the distribution met the 
criteria of normal distribution or not, followed by 
post-hoc comparison by the Student’s or Dunn’s test, 
respectively, with correction for multiple comparisons 
by Benjamini–Hochberg or Holm, respectively. If the 
number of groups compared was 2, the analyses were 
performed using the Student’s or Wilcoxon’s test, de-
pending on the normality of distribution. Intergroup 
comparisons were performed using the R packages 
“FSA” [41] and “car” [42]. 

Data visualization was performed using the R 
packages “ggplot2” [43] and “ComplexHeatmap” [44]. 

Differences were considered statistically significant 
at p < 0.05.

RESULTS

Algorithmic reconstruction of the ERK1 and 
ERK2 genecentric molecular pathways
Both pathways were reconstructed based on a pre-
viously developed human interactome model rep-
resented as a graph comprising 361 654 interactions 
among 64 095 molecular players. The pathways in-
cluded members directly interacting with the central 
node (ERK1/MAPK3 or ERK2/MAPK1, respective-
ly). Annotation of the functional roles of the pathway 
components was performed algorithmically according 
to [14]. The resulting pathways (Fig. 1) contained 447 
and 443 molecular players, respectively. The function-
ally annotated list of pathway members is provided 
in Supplementary Table 1. A total of 428 members of 
these pathways (95.7 and 96.6%, respectively) were 
shared, evidence of their close structural similarity.

Prognostic significance of the activation of the 
ERK1/2 pathway and gene expression in relation 
to cancer patient survival in TCGA data
RNA sequencing data from the TCGA reposito-
ry were analyzed to assess the degree of associa-
tion between patient survival and the expression of 
the MAPK3 and MAPK1 genes, as well as the PAL 
values of the newly reconstructed ERK1 and ERK2 
pathways. Our analysis revealed that the PAL values 
for the ERK1 and ERK2 pathways generally exhibit 
similar distributions across various tumor types. At 
that stage, the genecentric KRAS pathway was ad-
ditionally included in the analysis. this justified by 
the key role played by RAS family gene products 
in the activation of the RAS-RAF-MEK-ERK cas-
cade (Supplementary Fig. 1A). The KRAS pathway 
was found to generally display a broader distribution 
and lower PAL values (except in pheochromocytoma 
and paraganglioma, where its median value is high-
er) compared to the ERK1/2 pathways. However, the 
overall trends in PAL variability across these molecu-
lar pathways are consistent (Supplementary Fig. 1B). 
The activation of the KRAS pathway is directly linked 
to the activation of ERK1/2, providing a means to as-
sess the interplay between these signaling pathways 
and identify differences in their activity across tumor 
types. In this case, despite similar trends in PAL val-
ues within various tumor types for all three pathways, 
the lower PAL values observed for the KRAS path-
way suggest that ERK pathway activation in these tu-
mors may occur via alternative mechanisms that are 
independent of KRAS activity.
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Fig. 1. Schematic representation of the composition of algorithmically built molecular pathways centered around the 
ERK1 (A) and ERK2 (B) proteins. The gene products participating in the ERK1 and ERK2 signaling pathways are high-
lighted in the context of the model of human interactome encompassing 361 654 protein–protein interactions across 
64 095 molecular players [35]. Red dots represent the central nodes of the pathways (ERK1 or ERK2); projections of 
pathway members are shown in blue and green for the ERK1 and ERK2 molecular pathways, respectively. Other nodes 
are shown in grey, with the rest of the interactome graph shown as a background. Visualized using the Gephi software 
and ForceAtlas2 algorithm [35]

А B

At the next stage, for each cancer type and each 
putative biomarker, patients were divided into two 
groups based on whether the PAL or gene expres-
sion value was above or below the optimal cut-off 
point. The Kaplan–Meier method was employed to 
estimate the chances of survival. The log-rank test 
was used to assess the statistical significance of the 
differences between the two groups. In addition, the 
hazard ratio (HR) and its 95% confidence interval 
(CI) were calculated. The data were grouped accord-
ing to the HR value and its statistical significance, 
and the results were presented as a heatmap with 
hierarchical clustering (Fig. 2). 

For the overall survival (OS) data, different 
cancer types showed differential clustering when 
grouped according to HR values for the ERK1/2 
pathways (Fig. 2A). Both pathways generally 
showed consistent patterns. Specifically, for glio-
blastoma, kidney, pancreatic, gastric, bladder, lung 
adenocarcinoma and lung squamous cell carcinoma, 
activation of both of the ERK1/2 molecular path-
ways was associated with significantly lower patient 
OS numbers. Conversely, for the group of gender-
associated female tumors (subtypes of breast cancer 
and endometrioid carcinoma of the uterine corpus), 

activation of both pathways was a positive prog-
nostic biomarker of OS (Fig. 2A). Interestingly, con-
flicting trends were observed in the prognostic sig-
nificance of ERK1 and ERK2 pathway activation for 
sarcoma and thyroid cancer. Given the high similar-
ity between these pathways, differences in progno-
sis may be attributed to variations in the ARR val-
ue, which is also considered when calculating PAL 
and reflects the functional role of the gene product 
in the pathway under study (Supplementary Fig. 2, 
Supplementary Table 1).

The data obtained for progression-free survival 
(PFS) generally confirmed the observations obtained 
for overall survival (Fig. 2B). Again, activation of the 
ERK1/2 pathway was a negative biomarker for glio-
blastoma, renal, pancreatic, gastric, bladder, lung ad-
enocarcinoma, and squamous cell carcinoma of the 
lung. In addition, for PFS (not so for OS) it was also 
a negative biomarker for sarcomas, thyroid cancer, 
and colorectal cancer. As with OS, activation of the 
ERK1/2 pathways was a positive biomarker for sev-
eral subtypes of breast cancer and for endometrioid 
carcinoma of the uterine corpus. In addition (unlike 
in OS), it was a positive biomarker for the head and 
neck, liver, and prostate cancers (Fig. 2B).
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Fig. 2. The heatmap of hazard ratio values calculated for the activation of the ERK1 and ERK2 molecular pathways for 
the (A) TCGA overall survival (OS) and (B) progression-free survival (PFS) data. HR – hazard ratio; PW – pathway;  
* p < 0.05; ** p < 0.01; *** p < 0.001

In parallel, a similar analysis was performed for 
the expression levels of the respective central genes 
of these pathways: MAPK3 and MAPK1 (Fig. 3). For 
the individual gene level, only for bladder carcinoma 
did both genes show a consistent trend (were nega-
tive biomarkers) for both OS and PFS data.

We then averaged the HR values for both OS and 
PFS data for the PAL and single gene expression 
types of analyses (Fig. 4). For the average HR of PAL, 
a clear separation of cancer types into two clusters 
was observed (Fig. 4A), whereas the analyses of single 
gene expression levels showed no definitive cluster-
ing (Fig. 4B). Hence, the pathway activation analysis 
returned more consistent and stable results than the 
assessment of single gene expression levels did. This 
phenomenon is most probably related to the more 
stable nature of the pathway-based, aggregated gene 
expression data, as has been theoretically and experi-
mentally confirmed in previous works [3, 15, 22].

We also calculated the percentage of cancer types 
where the individual MAPK3 and MAPK1 genes and 
respective genecentric molecular pathways could be 
statistically significant potential prognostic biomark-
ers according to the TCGA data (Table 4). Overall, the 
activation of molecular pathways was a putative prog-
nostic biomarker more frequently than the expression 
of the central genes of the respective pathways.

A dendrogram was then constructed showing the 
structure of the resulting clusters of cancer types in 
relation to the HR values calculated for the molecular 
pathway activation data (Fig. 5).

The dendrogram clearly shows two clusters in-
cluding 10 and 12 cancer types, respectively; with-
in each of those, activation of the ERK1 and ERK2 
molecular pathways has similar prognostic value. 
Thus, the first cluster of 10 cancer types includes 
the gastric, pancreatic, lung, kidney, bladder, thy-
roid, cervical, sarcoma, and glioblastoma cancers, 
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where ERK1/2 pathway activation is a rather nega-
tive prognostic biomarker (for 90–100% of cluster 1 
cancer types). The second cluster includes 12 other 
tumor types for which activation of these pathways 
is either a positive prognostic biomarker (HER2+, 
luminal A and luminal B breast cancer, uterine cor-
pus cancer; a total of 17–25% of cluster 2 cancer 
types) or has no prognostic value (basal breast can-
cer, hepatocellular carcinoma, melanoma, etc.; a total 
of ~75% of cluster 2 cancer types).

Prognostic significance of ERK1/2 
pathway activation according to RNA 
expression datasets in the literature
In this study, we assessed the prognostic values of 
ERK1/2 pathway activation levels and individual 
genes using an additional set of previously published 
clinically annotated gene expression profiles collected 
by Borisov et al. [28]. Based on the data in the litera-
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Fig. 3. The heatmap of hazard ratio values calculated for the expression levels of the ERK1 and ERK2 individual genes 
for the (A) TCGA overall survival (OS) and (B) progression-free survival (PFS) data. HR – hazard ratio; * p < 0.05;  
** p < 0.01; *** p < 0.001

Table 4. The percentage of cancer types where the 
ERK1/2 genes or ERK1/2-centric molecular pathways 
can be potential prognostic biomarkers in the TCGA data

Type of 
analysis

Type  
of biomarker ERK1, % ERK2, %

Molecular 
pathway

Negative 42 42

Positive 12.5 8

Individual 
gene

Negative 8 21

Positive 4 21
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ture, patient responses to therapy were evaluated ac-
cording to the RECIST criteria [27].

Our analysis yielded statistically significant differ-
ences in the PAL values between response groups for 
patients with the following cancers: colorectal cancer, 
sarcomas, breast cancer, lung adenocarcinoma, and 
multiple myeloma.

Interestingly, the results of the analysis of the re-
sponse to therapy for patients with colorectal cancer 
(Fig. 6A) and sarcomas (Fig. 6B) from the TCGA proj-
ect are consistent with the results of the HR analysis 
and the prognostic value of the molecular pathways 
studied for the survival of patients from the same 
TCGA datasets in the larger sample. In both cancer 
types, patients with lower activation of one or both of 
the studied molecular pathways responded better to 
therapy. 

In turn, the previously reported positive prognostic 
significance of ERK1/2 pathway activation in breast 
cancer was confirmed in two gene expression datas-

ets for patients receiving combination treatment with 
taxanes and anthracyclines: GSE25066 (paclitaxel, 
5-fluorouracil, cyclophosphamide, doxorubicin or epi-
rubicin in adjuvant and neoadjuvant regimens) and 
GSE20194 (paclitaxel, 5-fluorouracil, cyclophospha-
mide, doxorubicin in combination in neoadjuvant regi-
men), (Fig. 6C,D). 

In addition, in this study, we evaluated the as-
sociation between PAL and the response to thera-
py in blood tumors. Statistically significant rela-
tionships were identified for the multiple myeloma 
dataset in patients receiving bortezomib monotherapy 
(GSE9782). Although this cancer type was not includ-
ed in the previous TCGA analysis, the results suggest 
that activation of the ERK1/2 pathway may point to a 
positive survival prognosis (Fig. 6E).

Furthermore, the association between the ERK1/2 
pathway PAL and the response to anti-PD1 immuno-
therapy was evaluated in patients with lung cancer 
using the GSE207422 dataset. This dataset included 
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may be closely associated with the response to several 
anticancer therapies, such as in breast cancer, colorec-
tal cancer, and sarcomas.

Prognostic significance of ERK1/2 pathway 
activation according to the original 
experimental RNA expression datasets
The previous findings were supplemented with the 
results obtained using our proprietary gene expres-
sion datasets previously published by our team for 
cancer patients annotated with the therapy response. 
Three of our previous clinical datasets were con-
sidered here: glioblastoma (n = 49), stomach cancer 
(n = 15), and multiple myeloma (n = 60) patients re-
ceiving anticancer therapy. The response to the ther-

RNA expression data from 24 lung cancer patients, 
of whom twelve were diagnosed with squamous cell 
lung cancer, eight, with lung adenocarcinoma, and the 
remaining patients had other diagnoses. For both the 
entire sample and the individual squamous cell lung 
cancer and lung adenocarcinoma groups, there was a 
trend for patients who responded to immunotherapy 
to demonstrate higher ERK1/2 activation in tumor 
samples (Fig. 6F–H). However, because the sample 
was small and the observed difference did not reach 
the level of statistical significance, this finding needs 
to be revisited in an independent analysis using a 
larger cohort of patients. 

In summary, an analysis of clinical datasets con-
firmed that activation of ERK1/2 molecular pathways 

Fig. 5. Dendrogram based on clustering tumors by hazard ratio calculated for the ERK1- and ERK2-centric pathway acti-
vation data using TCGA gene expression profiles 
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apy was assessed either according to the PFS alone 
(glioblastoma), the RECIST criteria alone (multiple 
myeloma), or both the PFS and the RECIST criteria 
(gastric cancer). 

The PFS data results revealed a strongly negative 
prognosis for ERK1/2 activation in response to the 
temozolomide therapy in glioblastoma and no signifi-
cant association for the treatment of stomach cancer 
patients with the targeted therapeutic ramucirumab 
(Fig. 7). No statistically significant difference could be 
observed for the ERK1/2 pathway activation for the 
RECIST responder and non-responder patient data.

In the multiple myeloma dataset, we also found no 
statistically significant difference in ERK1/2 PAL val-
ues for patients who responded or did not respond 
well to treatment with bortezomib-containing regi-
mens.

DISCUSSION
In this study, we for the first time algorithmically re-
constructed molecular pathways for the regulatory 
protein kinases ERK1 and ERK2 using a whole in-
tractome model. We then examined the relationship 
between the activation levels of these pathways and 
the available data on patient survival and sensitivity 

to different therapeutic regimens in different cancer 
types. 

The results suggest that cancer types can be di-
vided into three classes, in which ERK1/2 pathway 
activation may be either a negative or positive prog-
nostic biomarker or may not be statistically signifi-
cant at all. Specifically, the first class of such cancers 
includes gastric cancer, two different histologic types 
of lung cancer, glioblastoma, sarcomas, kidney can-
cer, and some other cancers (Fig. 4). Our results are 
also consistent with the literature: for example, an ex-
perimental association between ERK activation and 
a negative prognosis is known for gastric cancer [45, 
46], kidney, bladder and lung adenocarcinoma [47]. For 
glioblastomas, angiogenic factors and receptors were 
shown to play one of the key roles in their develop-
ment; in particular, activate the RAS-RAF-MEK-ERK 
axis and promote the proliferation, migration, and 
survival of malignant cells [48]. In our study, activa-
tion of the ERK pathway was associated with shorter 
PFS for glioblastoma patients after therapy with the 
alkylating drug temozolomide. Therefore, activation 
of the ERK1/2-pathway in glioblastoma may poten-
tially be not only a prognostic biomarker of survival, 
but also a biomarker of the response to this type of 
therapy. 

The second class includes cancers for which acti-
vation of the ERK1/2 pathway was a positive prog-
nostic biomarker (HER2+, luminal A and luminal B 
breast and uterine corpus cancers). ERK1 activation 
has previously been shown to be associated with a 
better prognosis for breast cancer patients, because it 
leads to the blockage of the Hippo signaling pathway 
and one of its downstream targets, the YAP1 protein. 
However, in the same study, ERK2 activation proved 
to be associated with a negative prognosis [49]. On the 
other hand, it has recently been shown that HER2+ 
breast cancer is resistant to targeted therapy when 
ERK1/2 kinase activity is low, and that high kinase 
activity is a prognostic biomarker of tumor sensitivity 
to therapy [50]. It is consistent with our results, where 
positive associations were also shown for breast can-
cer sensitivity to taxanes and anthracyclines, where-
as expression of the individual corresponding central 
genes of these pathways was a much less accurate 
biomarker.

Finally, for the third class, which includes basal 
breast cancer, hepatocellular carcinoma, melanoma, 
and some other cancers, no significant biomarker po-
tential could be detected for activation of the ERK1/2 
pathway. We believe that, taken together, these re-
sults may be useful for cataloging clinically relevant 
alterations in intracellular signaling in cancers, and 
for further developing combination cancer therapies 
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