УДК 577.218

Молекулярные механизмы гемопоэза дрозофилы

С. А. Синенко

Институт цитологии РАН, Санкт-Петербург, 194064 Россия E-mail: s.sinenko@incras.ru Поступила в редакцию 05.04.2024 Принята к печати 31.05.2024 DOI: 10.32607/actanaturae.27410

РЕФЕРАТ Модельный организм – плодовая мушка Drosophila melanogaster – занял одно из ведущих мест в современных биологических исследованиях. Генетическая модельная система дрозофилы имеет ряд преимуществ, позволяющих ей лидировать в исследовании молекулярных механизмов процессов развития многоклеточных организмов. За последние два десятилетия достигнут существенный прогресс в изучении механизмов, регулирующих гемопоэз, или кроветворение у дрозофилы. В данном обзоре обсуждаются основные достижения в понимании молекулярных механизмов, участвующих в поддержании популяции мультипотентных прогениторных клеток и их дифференцировки в зрелые гемоциты, в гемопоэтическом органе личинки дрозофилы. Использование гемопоэтического органа дрозофилы в качестве модельной системы гемопоэза позволило охарактеризовать сложные взаимодействия между сигнальными путями и транскрипционными факторами в регуляции поддержания и дифференцировки прогениторных клеток посредством сигналов из гемопоэтической ниши, аутокринных и паракринных сигналов и сигналов, исходящих от дифференцированных клеток.

КЛЮЧЕВЫЕ СЛОВА гемопоэз, кроветворение, гемопоэтический орган, мультипотентность, гемопоэтические стволовые клетки, гемопоэтическая ниша, дрозофила, *Drosophila melanogaster*, гемоциты, дифференцировка, сигнальные пути, транскрипционные факторы.

СПИСОК СОКРАЩЕНИЙ ГО – гемопоэтический орган (lymph glands); ДС – дорсальный сосуд (dorsal vessel); ППГ – препрогемоциты; ПГ – прогемоциты; ПроПГ – промежуточные прогемоциты; ЗСЦ – задний сигнальный центр (posterior signaling center); МЗ – медуллярная зона (medullary zone); КЗ – корковая зона (cortical zone); ПЗ – промежуточная зона (intermediate zone); ПЛ – плазматоциты (PL); КК – кристаллические клетки (СС); ЛМ – ламеллоциты (LM); АФК – активные формы кислорода; АМП – антимикробные пептиды; ВКМ – внеклеточный матрикс; UAS – активирующая последовательность (upstream activation sequence); scRNAseq – секвенирование PHK одиночных клеток (single-cell RNA sequencing); ГСК – гемопоэтические стволовые клетки; СК – стволовые клетки; АМГК – аортально-мезонефрально-гонадный комплекс; Odd – Odd-skiped; Crq – Croquemort; ТФ – транскрипционный фактор; Antp – Antennapedia; NimC1 – Nimrod C1; Col – Collier; Hth – Homothorax; Tin – Tinman; Pnr – Pannier; FGFR – рецептор фактора роста фибробластов; Htl – Heartless; Dpp – Decapentaplegic; Wg – Wingless; Hh – Hedgehog; Ser – Serrate; Dome – Domeless; Е-кад – Е-кадгерин; Vkg – Viking; Hml – Hemollectin; PPO – профенолоксидаза; Lz – Lozenge; Hnt – Hindsight; Fz – Frizzled; Dot – Dorothy; Mad – mothers against dpp; Sd – Scalloped; Ptc – Patched; Ci – Cubitus interruptus; EGFR – рецептор эпидермального ростового фактора; TGF-beta – трансформирующий фактор роста бета; PCP – planar cell polarity; FGF – фактор роста фибробластов; Upd1-3 – Unpaired 1-3; FoxO – forkhead box protein O; Adgf-A – аденозиндезаминаза ростового фактора-А; AdoR – рецептор аденозина; РКА – протеинкиназа А.

введение

Плодовая мушка Drosophila melanogaster является модельным организмом, который широко используется в генетических исследованиях в клеточной биологии, биологии развития и иммунологии. Более 100 лет прошло с того момента, когда Томас Хант Морган начал использовать эту модельную систему в генетических исследованиях [1, 2]. При проведении генетических и биомедицинских исследований дрозофила имеет ряд преимуществ, в число которых входят (1) минимальный набор хромосом – всего четыре пары, три из которых (X/Y, II, III) содержат практически все гены данного организма. (2) Полностью секвенированный и аннотированный

геном дрозофилы состоит приблизительно из 13767 генов и характеризуется минимальным количеством дуплицированных генов и минимальной генной избыточностью. (3) Хорошо разработаны методы получения мутантных линий дрозофилы с помощью химического, изотопного, транспозонного (Р-элемент) и CRISPR/Cas9-опосредованного мутагенеза, UAS/Gal4-опосредованной системы условной инактивации экспрессии генов с помощью интерферирующих РНК (RNAi) и эктопической экспрессии генов, а также линий с визуализацией интересующих тканей [3-11]. Методы направленной инактивации гена позволяют использовать подходы обратной генетики, которые заключаются в инактивации интересующего гена с исследованием его фенотипа/функции в живом организме. На дрозофиле можно проводить обширные генетические скрининги с использованием методов прямой генетики: идентификации мутаций и функций гена после обнаружения интересующего фенотипа [12-14], и модифицированных генетических скринингов, направленных на определение генов, вовлеченных в интересующий процесс [15-17]. (4) Международные центры хранения обширных коллекций мутантных линий дрозофилы, включая коллекции генетических делеций, точечных мутаций и линий Р-транспозонов, CRISPR/Cas9, промоторов-Gal4, UAS-RNAi и UAS-трансгенов. (5) Стабильная система поддержания мутаций с помощью балансирующих хромосом и комбинирование мутаций с использованием мейотической рекомбинации. (6) Возможность исследования фенотипа на уровне организма *in vivo*. (7) Мушка имеет короткий жизненный цикл (30 дней), удобные и относительно недорогие условия содержания и оборудования для поддержания и хранения мутантных линий дрозофилы. Недостатками данной модельной системы являются: (1) огромная эволюционная дистанция между насекомыми и млекопитающими и, соответственно, недостаточная гомология на генетическом и физиологическом уровнях; (2) малый размер организма и трудоемкость работы с тканями дрозофилы; (3) ограниченная возможность использования биохимических и иммунохимических методов.

В качестве модельной системы дрозофила интенсивно используется в течение последних 50 лет практически во всех областях современной биологии, начиная с расшифровки молекулярного механизма апоптоза и заканчивая механизмами старения [3, 18–23]. В свою очередь, данная система широко используется для исследования молекулярных механизмов кроветворения, или гемопоэза и гуморального и клеточного ответов врожденного иммунитета. Термин кроветворение, или гемопоэз, обозначающий процесс образования, развития и созревания клеток крови, исторически относится к клеткам крови позвоночных животных. Гемопоэз позвоночных теплокровных животных поддерживается гемопоэтическими стволовыми клетками (ГСК), которые дают начало ряду мультипотентных и ограниченных гемопоэтических предшественников, дифференцирующихся во все виды клеток крови: эритроциты, тромбоциты, лейкоциты и лимфоциты. У беспозвоночных целомических организмов, к которым относится дрозофила, внутренняя полость тела содержит целомическую жидкость, или гемолимфу, содержащую гемоциты - аналоги клеток крови теплокровных организмов [24-27]. Гемопоэз дрозофилы — это процесс поддержания мультипотентных прогениторных клеток и их дифференцировки в три типа зрелых гемоцитов, происходящий в нескольких частях организма в течение стадий жизненного цикла. Важно отметить, что гемоциты насекомых функционально гомологичны миелоидным клеткам врожденного иммунитета позвоночных, параллельно возникшим в эволюции [28].

Двукрылые насекомые имеют четыре стадии жизненного цикла: эмбриональную, личиночную, стадии куколки и имаго. Основными биологическими функциями гемоцитов дрозофилы являются защитная, включающая неспецифические гуморальный и клеточный иммунные ответы, участие в регенеративных процессах, а также функция чистильщика от погибших клеток в процессе онтогенеза. У дрозофилы известны три линии зрелых клеток гемолимфы: плазматоциты, кристаллические клетки и ламеллоциты. На личиночной стадии наблюдается значительный рост и морфогенетические изменения организма, сопровождающиеся активной защитой от патогенных микроорганизмов. На этой стадии, которая широко используется для исследования гемопоэза, процесс гемопоэза происходит в гемопоэтическом органе (ГО), в котором можно наблюдать временную и пространственную динамику поддержания прогениторных клеток и их дифференцировки во все типы зрелых гемоцитов. Изучение гемопоэза дрозофилы показало, что механизм поддержания мультипотентных предшественников гемоцитов у дрозофилы и ГСК у млекопитающих существенно различается. Гемопоэтическая система дрозофилы не имеет (или пока не обнаружены) bona fide мультипотентных стволовых клеток, аналогичных клеткам позвоночных, у которых такие клетки поддерживаются на протяжении всей жизни. Использование преимуществ генетической модельной системы дрозофилы позволило существенно продвинуться в расшифровке и понимании молекулярных механизмов гемопоэза. Исследования двух последних десятилетий показали, что молекулярные механизмы поддержания прогениторных клеток и их дифференцировки в различные линии гемоцитов имеют некоторую аналогию с путями регуляции процессов дифференцировки миелоидных клеток млекопитающих [27, 29]. На сегодняшний день опубликован ряд исчерпывающих обзорных статей, освещающих многие вопросы данной области исследования [27, 29-34]. В настоящем обзоре обсуждаются основные достижения в исследовании молекулярных механизмов кроветворения в гемопоэтическом органе дрозофилы, что включает регуляцию поддержания мультипотентных прогениторных клеток и их дифференцировки с помощью транскрипционных факторов, сигнальных путей, метаболических и внешних факторов.

УЧАСТКИ ГЕМОПОЭЗА ДРОЗОФИЛЫ

Образование ранних клеток-предшественников, или препрогемоцитов, дрозофилы происходит в двух независимых участках мезодермы эмбриона - в головной и дорсальной мезодерме. Соответственно, кроветворение у дрозофилы происходит двумя независимыми путями или «волнами». В первом случае клетки головной мезодермы раннего эмбриона дают начало прогемоцитам эмбриона, которые далее поддерживаются и дифференцируются в зрелые линии гемоцитов, находящиеся в свободной циркуляции гемолимфы и называются циркулирующими гемоцитами [35-38]. Прогемоциты и их производные данного происхождения поддерживаются в циркулирующей гемолимфе на всех последующих стадиях жизненного цикла насекомого. Вторая волна гемопоэза происходит в дорсальной мезодерме, где формируется дорсальный «кровеносный» сосуд, или «аорта» (ДС, dorsal vessel), и гемопоэтический орган (первоначально названный lymph gland) (puc. 1), однако термин ГО наиболее точно соответствует данному органу [39-41]. ГО представлен парным тканевым образованием, состоящим из гемоцитов и их предшественников, ограниченных оболочкой внеклеточного матрикса. На личиночной стадии ГО является главным местом поддержания прогемоцитов и их дифференцировки в зрелые гемоциты. При этом гемоциты не покидают ГО до начала стадии куколки. Параллельно в гемолимфе на протяжении всех личиночных стадий находятся все типы циркулирующих гемоцитов. ГО распадается на начальной стадии куколки и высвободившиеся из него гемоциты смешиваются с циркулирующими гемоцитами. Таким образом, прогемоциты и гемоциты, происходящие из обеих участков мезодермы, сосуществуют на постличиночных стадиях жизненного цикла дрозофилы [36, 38, 42, 43].

ГЕМОЦИТЫ ДРОЗОФИЛЫ

Зрелые гемоциты дрозофилы представлены тремя морфологически различными типами. Плазматоциты (ПЛ) – фагоцитарные клетки, осуществляющие защитные, антимикробные и регуляторные функции, составляют примерно 90–95% гемоцитов. Кристаллические клетки (КК) – нефагоцитирующие клетки, составляющие 2-5% гемоцитов, принимают участие в процессах заживления ран, реакциях врожденного иммунитета и гипоксии. Третий тип гемоцитов – ламеллоциты (ЛМ) – гигантские специализированные клетки, которые дифференцируются только в ответ на внедрение паразитарных организмов или в ответ на повреждение тканей (puc. 1Б'). Эти типы клеток были выявлены в результате ультраструктурных исследований, а затем подтверждены по функциональной активности и молекулярным маркерам. На основании обширных исследований определены сигнальные пути и транскрипционные факторы, обеспечивающие спецификацию, дифференцировку и поддержание данных клеточных линий (см. обзоры [27, 29, 32]). Кроме того, с помощью метода секвенирования РНК единичных клеток (single-cell RNA sequencing, scRNAseq) обнаружено большое разнообразие подгрупп циркулирующих гемоцитов. С помощью нескольких экспериментальных подходов определены восемь подгрупп гемоцитов, выполняющих различные функции [44-47]. В ГО были идентифицированы также ранее не описанные типы клеток: ранние предшественники, или препрогемоциты (ППГ), и подтип плазматоцитов – адипогемоциты [43]. Однако на сегодняшний день многие недавно идентифицированные подгруппы гемоцитов остаются недостаточно охарактеризованными, и их молекулярные и функциональные особенности нуждаются в дальнейшем изучении.

Плазматоциты

Плазматоциты – основной тип клеток крови дрозофилы, осуществляющих защитные, иммунные и гомеостатические функции. Эти клетки представляют собой фагоциты, они участвуют в инактивации патогенных микроорганизмов и утилизации апоптотических клеток в процессе развития организма [26, 48–50]. Плазматоциты осуществляют фагоцитоз посредством рецепторов Croquemort (Crq), Eater и Nimrod C1 (NimC1) [51–54] и выполняют защитные функции, секретируя антимикробные пептиды (АМП) (*puc. 1Б*', *maбл. 1*) [55–57]. Данные клетки секретируют белки внеклеточного матрикса (ВКМ), коллаген IV, перлекан и ламинин А, способствуя формированию тканей [58, 59], а также фермент пероксидазин (Peroxidasin, Pxn) [60], удаляющий свободные радикалы. Отсутствие плазматоцитов в процессе эмбриогенеза вызывает дефекты органогенеза, ведущие к снижению жизнеспособности эмбрионов [61–64]. Идентификация с помощью scRNAseq молекулярных маркеров позволила выделить четыре подтипа плазматоцитов: PL1–4 (*puc. 1Б*') [43].

Кристаллические клетки

Кристаллические клетки содержат, как следует из их названия, кристаллы профенолоксидаз 1 и 2 (РРО1 и 2), которые участвуют в реакции меланизации. Эти клетки вовлечены в защитные реакции при повреждении тканей, а также во врожденном иммунном ответе, в первую очередь, за счет активации биохимического каскада меланизации [65-68], функционально схожего с каскадом тромбообразования у млекопитающих. При меланизации наблюдается потемнение и отвердение поврежденных тканей, что сопряжено с продукцией активных форм кислорода (АФК), способствующих нейтрализации патогенов и заживлению поврежденных тканей (рис. 1Б') [55, 65, 66, 69]. Подавление меланизации задерживает заживление поврежденных тканей [70-72] и снижает восприимчивость к микробным инфекциям [65, 66]. КК не обладают фагоцитирующей активностью, они экспрессируют специфические молекулярные маркеры и пролиферируют под действием определенных сигналов (см. далее, рис. 1Б', табл. 1). С помощью scRNAseq выявлены два подтипа кристаллических клеток: СС1 и 2 [43].

Ламеллоциты

Ламеллоциты – это большие плоские клетки, дифференцировка которых индуцируется вследствие сигналов, вызванных внедрением паразитарных организмов или при повреждении тканей. Клеточный иммунный ответ у дрозофилы опосредуется именно ламеллоцитами и в основном направлен на инактивацию яиц паразитических ос (*Leptopilina boulardi*) посредством их инкапсуляции [73, 74]. Плазматоциты прикрепляются к поверхности инородного объекта, а затем дифференцируются в ламеллоциты [75]. Зрелые ламеллоциты экспрессируют специфичные молекулярные маркеры, они не способны делиться и фагоцитировать (*puc. 1Б*', *maбл. 1*) [13, 26, 30, 51, 55, 66, 75–81]. При помощи scRNAseq в ГО выявлены два подтипа ламеллоцитов: LM1 и 2 [43].

Особенности стволовых клеток гемопоэтической системы дрозофилы: прогемоциты

Гемопоэтические стволовые клетки млекопитающих являются мультипотентными стволовыми клетками взрослого организма, способными к самообновлению и дифференцировке во все типы клеток крови. ГСК находятся в митотически покоящемся состоянии в гемопоэтических нишах, в костном мозге и других участках кроветворения, где под действием внешних факторов происходит их асимметричное деление, дальнейшее самообновление и дифференцировка [82-85]. ГСК способны к повторному заселению ниш и восполнению всего репертуара клеток крови. У дрозофилы к стволовым клеткам, способным к самообновлению на протяжении всей жизни, относятся мужские и женские стволовые клетки зародышевой линии, стволовые клетки кишечника и нейрональные стволовые клетки [86-89]. На сегодняшний день у дрозофилы не выявлены bona fide ГСК, но определены ранние мультипотентные прогениторные клетки или препрогемоциты, которые поддерживаются посредством сигналов из гемопоэтической ниши ГО и клеток ДС. Эти клетки активно пролиферируют и дают начало более дифференцированным клеткам: прогемоцитам. Прогемоциты находятся в митотически спокойном состоянии, они способны дифференцироваться во все типы гемоцитов [32, 38, 43, 90, 91]. Не установлено, способны ли препрогемоциты или прогемоциты к асимметричному делению [92, 93], в результате которого образуются стволовая и дифференцирующаяся дочерние клетки. Короткая продолжительность жизни дрозофилы и отсутствие необходимости поддержания и возобновления большого количества клеток крови говорят в пользу того, что механизм поддержания гемопоэтических прогениторных клеток у этого организма принципиально отличается от механизма у ГСК позвоночных.

ГЕМОПОЭТИЧЕСКИЙ ОРГАН ДРОЗОФИЛЫ: ЗОНЫ, КЛЕТКИ И МАРКЕРЫ

Генез гемопоэтического органа

С помощью клонального анализа установлено, что клетки-предшественники ГО и ДС образуются из общих клеток-предшественников, или так называемых гемангиобластов. В результате деления этих клеток образуются две дочерние клетки, одна из которых предшественник клеток сердечно-сосудистой системы (кардиобласты), диффе-

Рис. 1. А – схема строения гемопоэтического органа или лимфатических желез (lymph gland) третьей личиночной стадии дрозофилы. ГО состоит из парных передних долей и парных задних долей, прикрепленных и взаимодействующих с клетками дорсального сосуда и клетками перикардия. Передние доли ГО являются модельной системой исследования гемопоэза дрозофилы. Передняя доля ГО состоит из популяции клеток заднего сигнального центра (ЗСЦ) или гемопоэтической ниши; медуллярной зоны, состоящей из популяций препрогемоцитов (ППГ) и прогемоцитов (ПГ); кортикальной зоны, состоящей из дифференцированных гемоцитов: плазматоцитов (ПЛ), кристаллических клеток (КК) и ламеллоцитов (ЛМ); и популяции промежуточных прогемоцитов (ПроПГ) промежуточной зоны (ПЗ). Б – схема генеза гемопоэтического органа. На ранней эмбриональной стадии клетки кардиогенной мезодермы, или гемангиобласты (ГАБ), дают начало клеткам гемопоэтической линии (ГЛ) и клеткам-предшественникам сердечно-сосудистой системы – кардиобластам (КБ). На последующих стадиях эмбриогенеза клетки гемопоэтической линии кардиогенной мезодермы формируют три пары грудных сегментов (thoracic segments). Передние два сегмента сливаются и дают начало препрогемоцитам (ППГ) и всем гемоцитам передней доли ГО, тогда как третий задний сегмент дает начало клеткам гемопоэтической ниши ЗСЦ (выделено зеленым). На первой личиночной стадии передние доли ГО содержат препрогемоциты, прогемоциты и клетки ЗСЦ. На второй личиночной стадии начинается дифференцировка прогемоцитов в промежуточные прогемоциты, которые дифференцируются в плазматоциты и кристаллические клетки, формируя кортиковую зону ГО (цветами выделены соответствующие линии гемоцитов как отмечено на панели Б'). На третьей личиночной стадии продолжается процесс дифференцировки ППГ в терминально дифференцированные линии гемоцитов, соответственно сопровождающийся ростом кортикальной зоны ГО. При этом прогемоциты МЗ поддерживаются в митотически покоящемся состоянии. Б' – схема гемопоэза, происходящего в гемопоэтическом органе дрозофилы. Указаны гемопоэтические прогениторные клетки и линии дифференцированных гемоцитов, в скобках указаны аббревиатуры подтипов соответствующих линий гемоцитов, обнаруженных с помощью метода scRNAseq.

ренцирующихся в клетки ДС, а другая – предшественник клеток гемопоэтической линии, дающих начало гемоцитам [94]. Аналогичный механизм, вероятно, наблюдается у гемангиобластов аортально-мезонефрально-гонадного комплекса (АМГК) позвоночных, дающих начало клеткам гемопоэтической и сосудистой систем [95]. ГО образуется из трех грудных сегментов Т1-Т3, экспрессирующих TФ Odd-skiped (Odd) и фактор GATA Serpent (Srp) (рис. 1, табл. 1) [94]. При этом под действием фактора Antennapedia (Antp) клетки сегмента ТЗ формируют так называемый задний сигнальный центр (ЗСЦ, posterior signaling center, PSC), состоящий примерно из 30-40 клеток (рис. 1Б) [96]. Эти клетки являются гемопоэтической нишей, контролирующей гемопоэз в ГО личинок [97]. В поддержании клеток ЗСЦ также участвует ТФ Collier (Col), который контролируется Antp [96, 97]. Сегменты Т1-Т2 формируют первичные доли ГО под действием кофактора Homothorax (Hth) (рис. 1Б) [96]. Для формирования клеток ГО необходимы гены факторов транскрипции Tinman (Tin) и GATA Pannier (Pnr), лиганд морфогена Decapentaplegic (Dpp) и рецептор фактора роста фибробластов Heartless (Htl). Кроме того, сигнальный путь Wnt/Wingless (Wnt/Wg) положительно регулирует спецификацию кардиогенной мезодермы [94].

СТРОЕНИЕ ГЕМОПОЭТИЧЕСКОГО ОРГАНА

ГО – это парный орган, состоящий из четырех долей, расположенных вдоль аорты (*puc. 1A*). Основной является наибольшая передняя, или первичная доля. В ней происходят координированные процессы поддержания препрогемоцитов, прогемоцитов и их пролиферация и дифференцировка. Наименее изучены вторичные, третичные и четвертичные доли, они в несколько раз меньше и служат дополнительным источником гемоцитов при активации клеточного иммунного ответа [98]. Передняя доля ГО – наиболее структурированная часть органа, ее используют в качестве модели или основного объекта для изучения молекулярных механизмов гемопоэза у дрозофилы [41], и она, в частности, носит название ГО.

В передней доле ГО выделяют несколько зон, каждая из которых содержит функционально разные типы клеток, находящихся на разных стадиях дифференцировки: (1) ЗСЦ, функционирующая как ниша для регуляции самообновления и дифференцировки прогемоцитов; (2) медиально расположенная медуллярная или внутренняя зона (M3, medullary zone), состоящая из препрогемоцитов и прогемоцитов; (3) дистально расположенная корковая зона (КЗ, cortical zone), непосредственно в которой происходит дифференцировка и накопление зрелых гемоцитов (*puc. 1*) [41]; (4) промежуточная зона (ПЗ, intermediate zone), расположенная между медуллярной и кортикальными зонами, которая содержит промежуточные прогемоциты (ПроПО), экспрессирующие как маркеры прогемоцитов, так и маркеры зрелых гемоцитов (*puc. 1 и 2*, *maбл. 1*) [43, 93, 99, 100].

Как отмечено выше, первой зоной, возникающей как отдельная клеточная популяция, является ЗСЦ. Клетки ЗСЦ регулируют поддержание и дифференцировку прогемоцитов в первичной доле ГО на протяжении личиночных стадий. Эти клетки выполняют только сигнальные функции и не дифференцируются в гемоциты [43, 91, 96, 101–104]. Клетки ЗСЦ экспрессируют следующие молекулярные маркеры: Antp, Col, лиганд сигнального пути Hedgehog (Hh), лиганд рецептора Serrate (Ser) сигнального пути Notch (N), лиганд Wg сигнального пути Wg/Wnt (*puc. 2, табл. 1*) [96, 97, 99, 105].

До середины второй личиночной стадии в передней доле ГО представлены только прогемоциты Dome⁺, экспрессирующие репортер Domeless-Gal4 (Dome-Gal4), и популяция препрогемоцитов, не экспрессирующих данный репортер Dome- (см. далее). Прогемоциты *Dome*⁺ поддерживаются на второй и третьей личиночных стадиях и дифференцируются в зрелые гемоциты, формируя КЗ [6, 41, 90, 91, 99, 106]. Определенная популяция прогемоцитов ГО способна самообновляться, одновременно продуцируя зрелые гемоциты [90]. С помощью клонального анализа показано, что в непосредственной близости к ЗСЦ могут находиться гемопоэтические «стволовые» клетки дрозофилы [90, 91]. Присутствие данной клеточной популяции, именуемой препрогемоциты, или PH1, подтверждено с помощью анализа scRNAseq [43]. Однако, как уже ранее указывалось, у «стволовых» клеток дрозофилы не описана функция самообновления и асимметричного деления, характерного для ГСК млекопитающих [92, 93, 107]. На первой личиночной стадии препрогемоциты Dome- находятся в непосредственном соприкосновении с дорсальной аортой и ЗСЦ. Предполагается, что эти клетки дают начало прогемоцитам Dome+ [41, 43, 90, 91]. На первой и ранней второй личиночной стадиях происходит активный рост и деление прогемоцитов Dome⁺ [41, 91]. С использованием scRNAseq показано, что прогемоциты *Dome*⁺ являются гетерогенной популяцией, состоящей из двух подтипов клеток (PH2,3), что, вероятно, отражает иерархию их дифференцировки [43].

Таблица 1. Молекулярные маркеры и гены, вовлеченные в спецификацию и поддержание линий гемоцитов в процессе гемопоэза дрозофилы

Клетки гемопоэти- ческой системы ГО дрозофилы	Молекулярные маркеры типов гемоцитов	Гены человека, гомологичные генам маркеров гемоцитов	Гены, участвующие в специфи- кации и поддержании типов гемоцитов	Гены человека, гомологичные генам дрозофилы
Гемангиобласты эмбриона	Odd-skiped (Odd) Serpent (Srp)	OSR2 GATA 1	Odd Srp	OSR2 GATA 1
Клетки гемопоэти- ческой ниши ЗСЦ (производные сег- мента ТЗ эмбриона)	Antennapedia (Antp) Collier (Col) Hedgehog (Hh) Serrate (Ser) Wingless (Wg) Spitz (Spi) Pvf1	HOXA7 EBF1 SHH JAG1 WNT1 EPGN FLT1,4	Antp Col Wg Fz2 Myc Robo 1,2 Dpp Dad Mad	HOXA7 EBF1 WNT1 FZD5 MYC ROBO1,2,3 BMP2 SMAD6 SMAD1
Гемопоэтическая линия – препро- гемоциты сегментов T1– 2 эмбриона	Homothorax (Hth)	MEIS1	Homothorax (Hth) Decapentaplegic (Dpp) Tinman (Tin) Pannier (Pnr) Heartless (Htl) Wingless/Wg	MEIS1 BMP2 NKX2-2 GATA4 FGFR3 WNT1
Препрогемоциты	Dome ⁻ /Pvf2 Notch-GAL4 Su(H)-lacZ E(spl)mß Hand	VEGF A-D NOTCH1 RBPJ HES2 HAND1,2	Odd Pvf2/Pvr Notch Dpp Mad Scalloped (Sd)	OSR2 VEGF A-D NOTCH1 BMP2 SMAD1 TEAD1
Прогемоциты	Dome ⁺ Е-кадгерин Upd3 Wg	PTPRQ CELSR1 - WNT1	Patched (Ptc) Cubitus interruptus (Ci) Wg Wnt6 β-катенин Fz2 Col Stat92E AdoR Pka-C EGFR	PTCH1 GLI3 WNT1 WNT6 CTNNB1 FZD5 EBF1 STAT5A ADORA2A PRKACB EGFR
Промежуточные прогемоциты	Dome ⁺ /Pxn ⁺ Dome ⁺ /Hml ⁺		EGFR Pointed (Pnt)	EGFR ETS1
Плазматоциты	Peroxidasin (Pxn) Hemollectin (Hml) Nimrod (NimC) Eater Pvr	PXDN MUC5AC SCARF1 MEGF10 FLT1,4	Thisbe (Ths) Heartless (Htl) Pointed (Pnt) u-shaped (Ush) Srp FoxO Pvr	FGF8 FGFR3 ETS1 ZFPM1 GATA1 FOXO3 FLT1,4
Кристаллические клетки	Lozenge (Lz) Hindsight (Hnt) Sima/Hif-α Frizzled2 (Fz2) PPO1 μ PPO2	RUNX1,3 RREB1 HIF1A FZD5 -	Notch Serrate (Ser) FoxO Fz2	NOTCH1 JAG1 FOXO3 FZD5
Ламеллоциты	L1/Atilla Misshapen Myospheroid	_ MINK 1 ITGB 1	EGFR FoxO Ph-p E(Pc) Col	EGFR FOXO3 PHC3 EPC1 EBF1

Примечание. В столбцах 3 и 5 указаны гены человека, гомологичные соответствующим генам дрозофилы, указаным в столбцах 2 и 4. Синим отмечены гены, кодирующие негативные регуляторы соответствующих процессов гемопоэза.

Пролиферация прогемоцитов *Dome*⁺ значительно снижается к середине второй личиночной стадии. При этом клетки на дистальном крае M3 начинают дифференцироваться, что сопровождается снижением пролиферации, повышением гранулярности и отсутствием экспрессии Е-кадгерина (Е-кад). Клетки M3, или прогемоциты *Dome*⁺, характеризуются высоким уровнем экспрессии лиганда Upd3 (сигнальный путь JAK/STAT), лиганда Wg, Е-кад и АФК [41, 99, 100, 108] и низким уровнем экспрессии Col [102, 109, 110]. Белки внеклеточного матрикса (ВКМ), в том числе коллаген типа IV (Viking, Vkg) и перлекан Trol, имеют повышенную локализацию между клетками M3 [106, 111].

Плазматоциты в КЗ экспрессируют следующие маркеры: Pxn, гемолектин (Hemollectin, Hml), Eater, антиген Р1 или Nimrod-C (NimC) (puc. 1Б', табл. 1) [41, 56, 81, 99, 112, 113]. С помощью scRNAseq в кортикальной зоне ГО идентифицированы четыре подтипа плазматоцитов [43]. Кристаллические клетки экспрессируют такие факторы транскрипции, как Lozenge (Lz) с Runt-доменом, Hindsight (Hnt), Sima/Hif-а, рецептор Frizzled2 (Fz2), PPO1 и РРО2 [65, 78, 114-116]. В норме без воздействия патогенных факторов ламеллоциты практически не образуются в КЗ. В ГО дифференцируются два подтипа ламеллоцитов, экспрессирующих L1/Atilla, Misshapen, интегрин α -PS4 и его партнер Муоspheroid (рис. 1Б', табл. 1) [10, 43, 51, 55, 77, 80, 117].

Между прогемоцитами Dome+ и дифференцирующимися клетками Pxn⁺ медуллярной и кортикальных зон находится популяция клеток, которые одновременно экспрессируют маркеры обеих зон это промежуточные прогемоциты (ПроПГ), которые представляют так называемую промежуточную зону (рис. 1, табл. 1) [34, 93, 99, 100, 118]. ПроПГ экспрессируют ранние маркеры дифференцировки Hml и Pxn, однако не экспрессируют зрелые маркеры плазматоцитов (Р1) и кристаллических клеток (РРО1 и 2) [106], а также перестают экспрессировать Е-кадгерин. Последние исследования, проведенные методом scRNAseq, позволили более подробно охарактеризовать данную зону, в которую включили четыре стадии промежуточных прогемоцитов (PH4-6), ранние плазматоциты (PL1) и ранние кристаллические клетки (СС1) [43]. Показано также, что клетки популяции ПроПГ, характеризующиеся активацией митоза, дифференцируются в плазматоциты и КК под действием активации сигнальных путей: Ras/Raf или Ser/Notch соответственно [118]. Молекулярные механизмы, регулирующие данную популяцию, наименее охарактеризованы и требуют дальнейшего изучения.

СИГНАЛЬНЫЕ МЕХАНИЗМЫ, ВОВЛЕЧЕННЫЕ В ПОДДЕРЖАНИЕ И ДИФФЕРЕНЦИРОВКУ ПРЕПРОГЕМОЦИТОВ

В начале первой личиночной стадии в ГО находится популяция мультипотентных препрогемоцитов, представляющих собой самую раннюю постэмбриональную популяцию гемопоэтических препредшественников, которые, вероятнее всего, исчезают позднее первой личиночной стадии [91]. Для данных клеток характерно отсутствие экспрессии маркера прогемоцитов Dome, низкий уровень экспрессии маркера Dorothy (Dot) и активация сигнального пути Notch (Notch-GAL4, Su(H)-lacZ) и его целевого гена enhancer of split $m\beta$ (E(spl) $m\beta$) (puc. 1, табл. 1) [43, 91]. Показано, что, помимо Notch, поддержание данных клеток регулируется лигандом-морфогеном Dpp, который секретируется клетками ниши ЗСЦ. Инактивация Dpp в ЗСЦ или подавление функции $T\Phi$ mothers against dpp (Mad) в препрогемоцитах Notch⁺ вызывает существенное уменьшение размера ГО к 3-й личиночной стадии. Таким образом, активация сигнальных путей Notch и Dpp необходима для пролиферации препрогемоцитов. Далее на 2-й и 3-й личиночных стадиях *Dome*-препрогемоциты начинают экспрессировать ТФ Hand и Scalloped (Sd) [119]. Обнаружено, что эти клетки также экспрессируют лиганд Pvf2 рецептора Pvr (гомолог рецепторов PDGF/VEGF человека), и его экспрессия зависит от активности Sd. Инактивация Pvf2 в данных клетках ведет к подавлению их пролиферации и к существенному последующему снижению размера ГО. При этом эктопическая экспрессия Pvf2 в этих клетках восстанавливает пролиферативный дефект в ГО, частично утративших функцию Sd [119].

Показано также, что в поддержании ранних прогемоцитов Dome⁺ участвует кальций/кальмодулиновый сигнальный путь, который активируется через ионотропный рецептор ү-аминомасляной кислоты (ГАМКС-рецептор, GABABR). GABABR экспрессируется в клетках ЗСЦ. Кальций/кальмодулиновый путь в ЗСЦ участвует в регуляции пролиферации препрогемоцитов на ранних личиночных стадиях, не влияя на дифференцировку гемоцитов на третьей личиночной стадии. Нарушение кальций/ кальмодулинового сигнального пути в клетках ЗСЦ вызывает значительное снижение пролиферации препрогемоцитов [120]. Таким образом, эти данные указывают, что в поддержании и пролиферации ранних препрогемоцитов Dome⁻ участвуют несколько сигнальных путей: сигнальные пути Notch, Dpp, Pvf2/Pvr (puc. 2). Интересно, что вовлеченность сразу нескольких сигнальных путей в регуляцию одного процесса может указывать на сложную систему регуляции и возможность взаимной компенсации разных сигнальных путей. Следует отметить, что технические сложности работы с ГО на первой личиночной стадии и недостаток маркеров затрудняют изучение популяций клеток $Dome^{-}Sd^{+}$ и $Dome^{-}$ $Notch^{+}$ [91].

СИГНАЛЬНЫЕ ПУТИ, РЕГУЛИРУЮЩИЕ ПОДДЕРЖАНИЕ И ДИФФЕРЕНЦИРОВКУ ПРОГЕМОЦИТОВ

Как уже отмечалось, прогемоциты являются мультипотентными предшественниками всех типов гемоцитов. Поддержание мультипотентности и митотического покоя данных прогемоцитов контролируется множеством сигналов, происходящих из трех разных источников (рис. 2). Сигналы первого типа – это сигналы цитокинов и ростовых факторов, секретируемых клетками сигнальной ниши ЗСЦ. Второй тип сигналов - это аутокринные или паракринные сигналы, возникающие и принимаемые одной и той же популяцией клеток в МЗ ГО. Третий тип - сигналы от дифференцированных клеток кортикальной зоны ГО, направленные на поддержание и дифференцировку прогемоцитов M3. К четвертому типу можно отнести системные сигналы, исходящие от различных тканей вне гемопоэтического органа, которые образуются в ответ на воздействия внешней среды и воспринимаются через нишу ЗСЦ.

Характерной особенностью прогемоцитов МЗ является строго скоординированный контроль их пролиферации. На первой и ранней второй личиночной стадии практически все клетки ГО, исключая препрогемоциты и клетки ниши ЗСЦ, являются прогемоцитами Dome⁺ (puc. 1Б). На этих стадиях данные клетки интенсивно пролиферируют асинхронно. Затем, с началом появления дифференцированных клеток в поздней фазе второй личиночной стадии пролиферация прогемоцитов резко замедляется. Далее при формировании КЗ прогемоциты Dome+ практически перестают пролиферировать, в то время как клетки ПЗ и КЗ имеют более высокую скорость пролиферации на протяжении всей третьей личиночной стадии [41]. Таким образом, низкая скорость пролиферации и ее контроль коррелируют с поддержанием мультипотентного состояния прогемоцитов. Как уже отмечалось, известны четыре типа сигналов, необходимых для поддержания прогемоцитов дрозофилы: аутокринный сигнал, сигналы, исходящие из ниши ЗСЦ и от дифференцирующихся клеток, а также сигналы от других тканей организма. Потеря любого из этих сигналов ведет к потере мультипотентности прогемоцитов, вызывая их пролиферацию и, как следствие, дифференцировку [96, 103]. Важной особенностью прогемоцитов является корреляция между их пролиферацией и дифференцировкой. На сегодняшний день появляется все больше данных, указывающих, что только пролиферирующие прогемоциты способны принимать сигналы дифференцировки, в то время как покоящиеся прогемоциты не воспринимают данные сигналы. Исследование механизмов, регулирующих пролиферативную активность промежуточных прогемоцитов, должно способствовать большему пониманию данного вопроса.

СИГНАЛЫ, ИСХОДЯЩИЕ ИЗ НИШИ ЗАДНЕГО СИГНАЛЬНОГО ЦЕНТРА, РЕГУЛИРУЮТ ПОДДЕРЖАНИЕ И ДИФФЕРЕНЦИРОВКУ ПРОГЕМОЦИТОВ

Центральная роль сигнального пути Hh/Ptc/Ci в поддержании мультипотентного состояния прогемоцитов

Клетки ЗСЦ выполняют роль гемопоэтической ниши в ГО, они секретируют ряд сигнальных лигандов или ростовых факторов, при этом практически не экспрессируют соответствующие рецепторы. В то же время рецепторы данных лигандов экспрессируются в прогемоцитах, и инактивация соответствующих лигандов в клетках ЗСЦ подавляет поддержание прогемоцитов МЗ, вызывая их дифференцировку.

Лиганд Hh, связываясь со своим рецептором Patched (Ptc), вызывает активацию ТФ Cubitus interruptus (Ci). Нь экспрессируется исключительно в клетках ЗСЦ в ходе второй и третьей личиночных стадий (рис. 1, табл. 1). В то время как в прогемоцитах *Dome*⁺ на высоком уровне экспрессируется Ptc и активированный Ci, инактивация Hh не влияет на клетки ЗСЦ, но стимулирует дифференцировку прогемоцитов *Dome*⁺ во все три типа гемоцитов [96, 97, 102-104, 121-124]. Кроме того, подавление функции Сі вызывает дифференцировку прогемоцитов, подобно инактивации Hh в клетках ЗСЦ (рис. 2) [96, 121]. Этот процесс осуществляется в том числе за счет морфологических особенностей клеток ЗСЦ, протяженные псевдоподии которых проходят через несколько слоев прогемоцитов, что позволяет доставить лиганд глубоко внутрь медуллярной зоны [96, 102]. Показано также, что абляция клеток ЗСЦ с помощью индукции апоптоза не вызывает ожидаемой дифференцировки прогемоцитов, наблюдаемой при инактивации Hh [109, 110, 121]. Однако установлено, что популяция прогемоцитов Dome⁺ гетерогенна. Часть клеток *Dome*⁺ (Odd⁺ Col⁻) отвечает на сигнал Hh, тогда как клетки Odd⁺ Col⁺ не чувствительны к данному

сигналу [110, 121]. В связи с этим предполагается, что абляция клеток ЗСЦ не затрагивает отдельные прогемоциты. Возможно, что клетки Col⁺ являются отдельной популяцией прогемоцитов, которая контролируется сигналами из клеток дорсального сосуда [91, 119]. Установлено также, что ДС выполняет функцию дополнительной ниши. Так, лиганд Branchless (Bnl) (гомологичный фактору роста фибробластов, FGF), продуцируемый клетками ДС, активирует сигнальный путь FGF в прогемоцитах. Активация этого пути регулирует уровень внутриклеточного кальция и способствует поддержанию прогемоцитов в недифференцированном состоянии [125].

Подавление функции гена Roundabout (Robo) увеличивает количество клеток ЗСЦ, а также вызывает их распространение вглубь гемопоэтического органа. Эти события коррелируют со снижением дифференцировки плазматоцитов и кристаллических клеток [126]. При этом в ответ на патогенное вмешательство в клетках ЗСЦ происходит подавление активности фактора NF-kappaB Relish сигнального пути Imd. Инактивация Relish проявляется нарушением цитоскелета клеток ЗСЦ в результате активации киназы Jun, что приводит к удерживанию лиганда Hh, тем самым нарушая поддержание прогемоцитов, вызывая их преждевременную дифференцировку и активацию клеточного иммунного ответа [127]. Показано также, что подавление передачи сигналов Ca²⁺ или нарушение межклеточных контактов между клетками ЗСЦ влияет на функции данных клеток и вызывает преждевременную дифференцировку прогемоцитов [128].

АФК регулирует дифференцировку ламеллоцитов через активацию сигнальных путей Spitz/EGFR и Toll/Dif в нише ЗСЦ

Помимо регуляции гемопоэза в ГО, клетки ЗСЦ регулируют дифференцировку ламеллоцитов внутри и вне ГО. Так, абляция клеток PSC при инактивации Col или индукции апоптоза предотвращает дифференцировку ламеллоцитов в ответ на заражение паразитическими осами [97, 109]. С помощью генетических методов установлено, что такое заражение приводит к существенному повышению уровня АФК в ЗСЦ и именно АФК являются ключевым сигналом, вызывающим дифференцировку ламеллоцитов [129]. В клетках ЗСЦ АФК в норме не детектируются, однако при заражении паразитическими осами уровень АФК в них резко возрастает. Искусственное повышение уровня АФК в клетках ЗСЦ за счет подавления работы дыхательной цепи митохондрий также приводит к масштабному увеличению количества ламеллоцитов в циркуляции и ГО [129]. При этом в обоих случаях удаление АФК с помощью митохондриальной супероксиддисмутазы 2 (SOD2) или каталазы подавляет образование ламеллоцитов в ГО и циркуляции. Кроме того, активация сигнального пути киназа Akt (Akt1)/FoxO в клетках ЗСЦ, усиливающего антиоксидантный ответ, также отменяет генерацию ламеллоцитов. Показано, что АФК активирует сигнальный путь рецептора эпидермального фактора роста (EGFR), обеспечивая дифференцировку ламеллоцитов. Инактивация Spitz (лиганд EGFR) в клетках ЗСЦ или функции EGFR в гемоцитах подавляет образование ламеллоцитов (рис. 2) [129]. Функции белков Star и Rhomboid, непосредственно участвующих в переносе, расщеплении и активации лиганда Spitz (переводят его в растворимую форму), необходимы для индукции ламеллоцитов. Помимо этого, высокий уровень АФК активирует сигнальный путь Toll в клетках ЗСЦ, что также способствует индукции ламеллоцитов в ответ на воздействие паразитических ос [130]. Потеря компонентов сигнального пути Toll посредством инактивации Dif и pelle нарушает образование ламеллоцитов. Наряду со множеством вопросов о природе генерации АФК в клетках ЗСЦ и сигналов в ответ на инвазию паразитарных организмов, нерешенным остается и вопрос взаимодействия сигнальных путей Spitz/EGFR и Toll/Dif в клетках ЗСЦ в регуляции дифференцировки ламеллоцитов.

ЛОКАЛЬНЫЕ СИГНАЛЫ, ПОДДЕРЖИВАЮЩИЕ МУЛЬТИПОТЕНТНЫЕ СВОЙСТВА ПРОГЕМОЦИТОВ

Сигнальный путь Wg/Wnt/β-катенин поддерживает прогемоциты в мультипотентном состоянии

Одним из важных сигнальных путей, участвующих в поддержании мультипотентности и самообновлении гемопоэтических стволовых клеток млекопитающих, является сигнальный путь Wnt/β-катенин. Сигналы лигандов Wnt действуют как аутокринным, так и паракринным способом. В последнем случае лиганды секретируются из клеток гемопоэтической ниши и способствуют поддержанию идентичности ГСК. У дрозофилы, как и у млекопитающих, известно несколько генов, кодирующих лиганды Wnt (Wg, Wnt-2, -3/5, -4, -6, -8, -10), и два гена, кодирующих их рецепторы Fz и Fz2. Лиганды, связываясь с рецепторами, вызывают активацию или канонического пути через активацию ТФ β-катенина (Armadillo, Arm), или неканонического сигнального пути планарной клеточной полярности (англ. planar cell polarity), который вызывает активацию транскрипции посредством JNK. Канонический сигнальный путь Wg/Wnt/β-катенин участвует в поддержании мультипотентного состояния прогемоцитов (рис. 2, табл. 1) [99]. Так, рецептор Fz2, который передает сигнал по каноническому пути, экспрессируется на высоком уровне в прогемоцитах Dome⁺. Усиленная активация сигнального пути Wg/Wnt/βкатенина в прогемоцитах *Dome*⁺, обусловленная сверхэкспрессией лиганда Wg или конститутивно активной формы β-катенина, не позволяет данным клеткам дифференцироваться, стимулируя их поддержание в недифференцированном состоянии [99]. В свою очередь, ингибирование данного сигнального пути с помощью комбинации доминантно-негативных форм рецепторов Fz и Fz2 в прогемоцитах $Dome^+$ вызывает нарушение зональности ГО, то есть кластеры дифференцированных клеток «перемешиваются» с кластерами прогемоцитов (рис. 2). Одновременная экспрессия доминантно-негативных форм Fz и Fz2 увеличивает количество промежуточных прогемоцитов ПЗ [99]. При этом подавляется экспрессия белка ЭКМ Е-кадгерина, который непосредственно вовлечен в поддержание прогемоцитов. Подавление экспрессии Е-кадгерина в прогемоцитах вызывает их дифференцировку, в то время как сверхэкспрессия Е-кадгерина способствует поддержанию прогемоцитов [41, 131]. Показано также, что активация сигнального пути Wg/Wnt/β-катенин в клетках Hml⁺ кортикальной зоны подавляет экспрессию белка ЭКМ Тід и влияет на созревание плазматоцитов [132, 133], что дополнительно указывает на функцию этого сигнального пути в клетках промежуточной зоны. Недавние исследования показали, что в прогемоцитах экспрессируется также лиганд Wnt6, экспрессия которого контролируется сигнальным путем Hh [134]. Важно отметить, что Wnt6 передает сигналы через новый неканонический Wnt-путь, опосредуемый рецептором LRP6 и подавляющим активность β-катенина. Взаимодействие цитозольного β-катенина с Е-кадгерином подавляет сигнальный путь EGFR в прогемоцитах. Таким образом, активация сигнального пути Wnt6/LRP6 ведет к задержке клеточного цикла в фазе G2, тем самым не позволяя прогемоцитам отвечать на сигналы к дифференцировке [134]. Однако активация сигнального пути EGFR в промежуточных прогемоцитах ПЗ снимает блокаду клеточного цикла путем активации бетакатенина и позволяет клеткам дифференцироваться посредством активации ТФ Pointed (Pnt) [134]. Таким образом, активация сигнальных путей: канонического Wg/бета-катенин и неканонического Wnt6 важна для поддержания прогемоцитов в мультипотентном состоянии, возможно, и в различных по-

пуляциях прогемоцитов, в том числе в популяции промежуточных прогемоцитов ПЗ.

Сигнальный путь кальций/кальмодулин участвует в поддержании прогемоцитов

Сигнальный путь кальций/кальмодулин участвует не только в ЗСЦ-зависимой регуляции пролиферации препрогемоцитов, но также и в поддержании прогемоцитов *Dome*⁺ (*puc. 2*). Подавление передачи сигналов кальция в прогемоцитах ГО приводит к увеличению количества дифференцированных гемоцитов. Напротив, активация сигналов кальция в прогемоцитах способствует их поддержанию и пролиферации, при этом образуется значительно меньше зрелых гемоцитов [120].

Активность фактора Collier важна для поддержания прогемоцитов

Транскрипционный фактор Col экспрессируется в прогемоцитах $Dome^+$, а его инактивация в клетках приводит к дифференцировке данных клеток в плазматоциты и кристаллические клетки (*maбл. 1*) [109, 110]. Экспрессия данного TФ в прогемоцитах не контролируется сигналами из ЗСЦ. При этом Col негативно регулирует также дифференцировку ламеллоцитов. Понижение уровня Col наблюдается при усиленной дифференцировке ламеллоцитов, в то время как его эктопическая экспрессия в прогемоцитах предотвращает образование данных клеток. Остается не ясным, под действием какого сигнального пути активируется функция Col в прогемоцитах.

Сигнальные пути FGF и Gbb/TGF-beta способствуют дифференцировке прогемоцитов

В отличие от Wnt, активация сигнального пути FGF в прогемоцитах Dome⁺ вызывает их дифференцировку в зрелые гемоциты всех трех типов. Ингибирование сигнального пути FGF вызывает значительный рост прогемоцитов, при этом наблюдается подавление их дифференцировки. Интересно, что лиганд FGF Thisbe (Ths) и рецептор Htl экспрессируются в прогемоцитах и некоторых, вероятно, промежуточных прогемоцитах, экспрессирующих пероксидазин. Эктопическая экспрессия целевых для FGF транскрипционных факторов Pnt и Ush способствует дифференцировке прогемоцитов [135]. Таким образом, передача сигнала FGF через Htl, Ras/ MAPK, Pnt и Ush способствует дифференцировке прогемоцитов (рис. 2). Показано также, что сигнальный путь TGF-beta через лиганд Glass bottom boat (Gbb) участвует в негативной регуляции дифференцировки ламеллоцитов и плазматоцитов КЗ за счет подавления сигнальных путей EGFR и JNK [136].

Сигнальный путь JAK/STAT участвует в поддержании прогемоцитов

Цитокины Unpaired 1-3 (Upd1-3), действуя через рецептор Dome, активируют киназу JAK и далее ТФ Stat92E, индуцируя транскрипцию целевых генов [102, 137]. Показано, что сигнальный путь ЈАК/STAT активирован в прогемоцитах Dome⁺ и участвует в поддержании их идентичности, предотвращая дифференцировку [41, 119, 137]. Активность ТФ Stat92E в прогемоцитах значительно ниже, чем в дифференцированных гемоцитах КЗ [138]. Однако функция ТФ Stat92E необходима для поддержания прогемоцитов. Инактивация Stat92E с помощью температурочувствительной мутации приводит к дифференцировке прогемоцитов [102]. При этом инактивация компонентов сигнального пути JAK/STAT, таких, как Dome или киназы JAK (hopscotch, hop), или Stat92E в прогемоцитах МЗ, не влияет на их поддержание [103, 139]. Показано, что ТФ Ush, регулируемый сигналами JAK/STAT, способствует экспрессии Е-кадгерина и Рtc в прогемоцитах, участвуя тем самым в их поддержании и подавлении дифференцировки [131, 140]. Белок переноса эндосом Asrij (Arj) участвует в фосфорилировании и активации STAT. Инактивация Arj частично фенокопирует температурочувствительный аллель Stat92E - подавляет поддержание прогемоцитов, вызывая их дифференцировку [141, 142]. Кроме того, сигнальный путь JAK/STAT положительно регулирует дифференцировку прогемоцитов в ламеллоциты при индукции клеточного иммунного ответа (puc. 2, табл. 1) [137].

Активные формы кислорода участвуют в поддержании прогемоцитов

Основными источниками АФК в клетке являются дыхательная цепь митохондрии и мембранные NADPH-оксидазы (NOX). Эти системы генерируют супероксидный анион-радикал, который далее под действием супероксиддисмутаз превращается в пероксид водорода. Главными формами АФК в клетке являются пероксид водорода и супероксидный анион-радикал. АФК являются мощными окислителями, в высоких концентрациях, а также при нарушении антиоксидантной системы клетки они вызывают необратимые изменения макромолекул, приводящие к старению и гибели клетки. Однако сублетальные, физиологические концентрации АФК служат важными сигнальными посредниками, участвующими в посттрансляционных модификациях белков сигнальных путей и транскрипционных факторов, тем самым регулируя различные процессы в клетке [143, 144]. Неожиданно оказалось, что в норме в прогемоцитах Dome⁺ поддерживаются повышенные уровни АФК по сравнению с дифференцированными гемоцитами кортикальной зоны (рис. 2, табл. 1) [100]. Прогемоциты находятся в митотическом покое. По аналогии с покоящимися (quiescent) ГСК млекопитающих можно предположить, что эти клетки имеют низкую митохондриальную/дыхательную активность и, соответственно, низкие уровни АФК. Однако известно, что в миелоидных предшественниках млекопитающих уровень АФК существенно выше, чем в ГСК, и также повышается при дифференцировке клеток миелоидной линии. Неясным остается механизм генерации повышенных уровней АФК в прогемоцитах. Однако показано, что АФК функционируют как сигнальные молекулы в процессе дифференцировки прогемоцитов. Снижение базального уровня АФК в прогемоцитах Dome⁺ путем экспрессии антиоксидантных ферментов подавляет формирование зрелых гемоцитов. В то же время искусственная индукция избытка АФК и ослабление окислительного фосфорилирования посредством инактивации комплекса-1 дыхательной цепи митохондрий в прогемоцитах через активацию сигнального пути JNK приводят к их дифференцировке во все три типа зрелых гемоцитов [100]. Увеличение уровня АФК в прогемоцитах приводит также к снижению экспрессии Е-кадгерина посредством активации сигнального пути JNK и ТФ Srp [145]. Эктопическая экспрессия ТФ FoxO сигнального пути JNK в прогемоцитах вызывает их дифференцировку в плазматоциты и кристаллические клетки [100, 145]. При этом одновременная активация FoxO и инактивация белков хроматина Polyhomeotic proximal (Ph-p) и Enhancer of polycomb (E(Pc)) вызывает дифференцировку прогемоцитов в ламеллоциты (рис. 2, табл. 1). Таким образом, умеренно высокий, но физиологически контролируемый уровень АФК необходим для поддержания прогемоцитов. Однако повышенная продукция митохондриальных АФК в прогемоцитах вызывает их дифференцировку через активацию сигнального пути JNK/ FoxO. Важно отметить, что в данном контексте функция FoxO не опосредует регуляцию антиоксидантных генов. Обнаружено также, что предполагаемые прогемоциты, циркулирующие в целоме личинки дрозофилы вне гемопоэтического органа, также характеризуются высокой продукцией АФК. Эти прогемоциты недостаточно охарактеризованы, они отнесены к предшественникам по аналогии с прогемоцитами ГО, которые экспрессируют повышенные уровни АФК и лиганд Wg [17]. Эти клетки образуются в большом избытке в результате активности онкогенного химерного белка AML1-ЕТО, экспрессируемого в гемоцитах *Hml*⁺. Высокие уровни АФК в таких циркулирующих прогемоцитах способствуют их поддержанию и повышенной пролиферации. Так, эктопическая экспрессия антиоксидантных ферментов SOD2 или каталазы (Catalase, Cat), а также $T\Phi$ FoxO, активирующего их экспрессию, подавляет генерацию и избыточную пролиферацию гемоцитов и их предшественников, вызванную онкогеном AML1-ETO [17]. В данном случае наиболее вероятно, что сигнальный путь Akt1/FoxO канонически регулирует экспрессию антиоксидантных генов. Таким образом, наблюдается как сходство, так и значительные различия в регуляции поддержания прогемоцитов ГО и циркулирующих прогемоцитов под действием АФК.

Синтаза оксида азота (Nos), как недавно показано, специфически экспрессируется в прогемоцитах и через продукцию оксида азота (NO) участвует в посттрансляционном S-нитрозилировании белков по остаткам цистеина [146]. S-нитрозилирование белков совместно с цитозольным кальцием активирует Ire1-Xbp1-опосредованную реакцию на развернутый белок (unfolded protein response, UPR), необходимую для поддержания прогемоцитов в митотически неактивном состоянии путем их остановки в фазе G2 клеточного цикла [146]. Как уже отмечалось, такая блокировка клеточного цикла делает прогемоциты невосприимчивыми к паракринным факторам, вызывающим дифференцировку. Показано также, что S-нитрозилирование EGFR временно инактивирует данный рецептор и таким образом делает прогемоциты невосприимчивыми к соответствующим сигналам. Важно отметить, что Nos, экспрессирующаяся в прогемоцитах, не содержит редуктазный домен, но при этом способна генерировать NO [146]. В свою очередь, поскольку эти клетки имеют высокие уровни АФК, данная форма Nos может использовать АФК для синтеза NO. Таким образом, предполагается, что взаимодействие между АФК и NO может участвовать в поддержании соответствующих уровней АФК, генерировать NO и тем самым защищать прогемоциты от избыточной продукции АФК.

В целом, очевидна сложная сеть регулировки поддержания и дифференцировки прогемоцитов в ГО. В локальной регуляции данных процессов участвуют несколько сигнальных путей. При этом, вероятно, существует сложная сеть взаимодействий между компонентами данных сигнальных путей в определенных временных интервалах гемопоэза дрозофилы. При этом различные сигнальные пути способны вызывать дифференцировку клеток, что может указывать на повышенную пластичность клеток-предшественников дрозофилы. Помимо данных сигналов и сигналов из ниши ЗСЦ, поддержание прогемоцитов контролируется сигналами дифференцированных клеток, о чем будет сказано в следующем разделе.

РАВНОВЕСНЫЕ СИГНАЛЫ МЕЖДУ КЛЕТКАМИ НИШИ ЗСЦ И ЗРЕЛЫМИ ГЕМОЦИТАМИ КОРТИКАЛЬНОЙ ЗОНЫ РЕГУЛИРУЮТ ПОДДЕРЖАНИЕ ПРОГЕМОЦИТОВ

С использованием генетической системы дрозофилы обнаружен уникальный механизм регуляции поддержания прогениторных клеток. Установлено, что поддержание и дифференцировка прогемоцитов контролируются «равновесно» двумя механизмами: (1) непосредственно сигналом из клеток гемопоэтической ниши ЗСЦ и (2) сигналом дочерних дифференцированных клеток, который также контролируется дополнительным сигналом, исходящим из той же гемопоэтической ниши. Клетки ЗСЦ регулируют не только поддержание мультипотентного состояния прогемоцитов, но также поддержание и дифференцировку гемоцитов кортикальной зоны (рис. 2). Этот процесс регулируется сигнальным путем Pvf1/Pvr [103]. Лиганд Pvf1 секретируется в клетках ЗСЦ, в то время как рецептор Pvr экспрессируется на высоком уровне в клетках кортикальной зоны. Инактивация Pvf1 в клетках ЗСЦ не влияет на пролиферацию и количество клеток ЗСЦ, однако приводит к подавлению поддержания прогемоцитов, вызывая их дифференцировку. Аналогичный эффект наблюдается и в результате подавления функции рецептора Pvr в дифференцированных гемоцитах кортикальной зоны, вызывающей обширную дифференцировку прогемоцитов [103, 119]. Важно отметить, что лиганд Pvf1 переносится на большие расстояния через несколько клеток посредством транспортных везикул, включающих связанные, но не сигнализирующие комплексы Pvf1 и Pvr на поверхности прогемоцитов.

Далее с помощью генетических методов было показано, что Pvf1, взаимодействуя с Pvr гемоцитов кортикальной зоны, активирует STAT-зависимую экспрессию секретируемой аденозиндезаминазы ростового фактора-А (Adgf-A) (*puc.* 2). Этот фермент осуществляет дезаминирование аденозина, превращая внеклеточную сигнальную молекулу аденозина в инертный инозин [147, 148]. Удаление аденозина посредством Adgf-A в гемоцитах КЗ приводит к подавлению соответствующего сигнального пути через рецептор аденозина (AdoR), находящийся в прогемоцитах. В результате снижается активность сАМР-зависимой протеинкиназы А (PKA), что, в свою очередь, активирует транскрипционный

Рис. 2. Схема участия и взаимодействия основных сигнальных путей в регуляции гемопоэза дрозофилы в гемопоэтическом органе. Поддержание и пролиферация клеток гемопоэтической ниши ЗСЦ (отмечено зеленым цветом) положительно контролируется Wq/Fz2/Myc и негативно контролируется Dpp/TGFβ. Поддержание и пролиферация препрогемоцитов (ППГ, серый) положительно контролируется сигналами Dpp, Notch, Pvf2/Pvr. Поддержание прогемоцитов (ПГ, синий) положительно контролируется сигналами Hh/PKA/Сі из гемопоэтической ниши, аутокринными сигналами Wnt/Fz/Fz2 и Ca²⁺ и негативно контролируется сигналом Adgf-A, идущим из дифференцированных гемоцитов КЗ (отмечено оранжевым цветом). Клетки ЗСЦ положительно контролируют экспрессию Adgf-A, посредством активации Pvr и STAT в дифференцированных гемоцитах КЗ, являясь звеном равновесного сигнала между клетками ниши ЗСЦ и зрелыми гемоцитами, контролирующими поддержание ПГ. Промежуточные прогемоциты (ПроПГ) обозначены желтым цветом. Дифференцировка и пролиферация плазматоцитов (ПЛ) положительно регулируется FGF/Htl/Ras и AФK/ JNK / FoxO, кристаллических клеток (КК) – Ser / Notch, ламеллоцитов (ЛМ) – Spi/EGFR, Jak/Stat и АФК/ JNK / FoxO (см. детали в тексте)

фактор Сі, опосредующий поддержание прогемоцитов в мультипотентном состоянии. Важно отметить, что активация сигнального пути Hh/Ptc из ЗСЦ также ингибирует активность PKA в прогемоцитах, что приводит к активации Сі. Таким образом, Hhзависимый сигнал из клеток ниши ЗСЦ и сигнал аденозина из дифференцированных гемоцитов КЗ синергически ингибируют активность РКА и активируют Сі, что приводит к поддержанию прогемоцитов в медуллярной зоне [96, 103]. Можно предположить, что аналогичный равновесный сигнал присутствует и в гемопоэтической системе млекопитающих.

СИГНАЛЬНЫЕ ПУТИ, УЧАСТВУЮЩИЕ В ПОДДЕРЖАНИИ ФУНКЦИИ КЛЕТОК НИШИ ЗСЦ

ТФ Аптр и Соl экспрессируются в клетках ЗСЦ на протяжении всех личиночных стадий. Данные клетки пролиферируют на ранней личиночной стадии и образуют кластер из 30–40 клеток, которые поддерживаются в течение третьей личиночной стадии (*puc. 1*). Аптр непосредственно контролирует спецификацию, поддержание и рост данных клеток, активирует экспрессию Col, который, в свою очередь, участвует в поддержании экспрессии Antp [96, 97, 116]. Лиганд Serrate рецептора Notch экспрессируется позднее в определенной популяции клеток ЗСЦ. Serrate необходим для дифференцировки кристаллических клеток в КЗ [96, 97, 105].

Пролиферацию клеток ЗСЦ антагонистически регулируют два сигнальных пути – Wg и Dpp [99, 123]. Все компоненты сигнального пути Wg, Fz2, β-катенин/Arm и Disheveled (Dsh) экспрессируются в ЗСЦ. Активация Wg необходима для увеличения количества клеток ЗСЦ (рис. 2, табл. 1). Так, при блокировании функции Fz2 происходит существенное снижение количества клеток ЗСЦ. в то время как эктопическая экспрессия Wg приводит к значительному увеличению количества этих клеток [99]. В противоположность Wg подавление сигнального пути Dpp/TGF-beta вызывает увеличение количества клеток ЗСЦ [123]. Активация сигнального пути TGF-бета через лиганд Dpp активирует транскрипционные факторы Daughters against dpp (Dad) и Mad, которые экспрессируются в клетках ЗСЦ [123, 149]. Количество клеток ЗСЦ существенно увеличивается при подавлении данного пути в результате инактивации гепарансульфатпротеогликан-связывающего белка Dally like (Dlp) и, соответственно, pMad в данных клетках (puc. 2). Одновременное подавление сигнальных путей Wg и Dpp восстанавливает ЗСЦ до размера дикого типа. Регуляция количества клеток ЗСЦ с помощью Wg зависит от Мус, поскольку инактивация Мус отменяет увеличение клеток ЗСЦ, вызванное эктопической экспрессий Wg [123]. В свою очередь, ТФ семейства forkhead – Jumu – вовлечен в регуляцию Мус в процессе регуляции пролиферации клеток ЗСЦ [150]. Для детального понимания механизма взаимодействия данных сигнальных путей в регуляции пролиферации и функционирования клеток ЗСЦ требуются дальнейшие исследования.

Показано, что развитая сеть белков внеклеточного матрикса между клетками ЗСЦ и прогемоцитами важна для регуляции передачи сигналов Dpp и Wg в процессе гемопоэза в ГО и ответа на стрессовые воздействия [151]. Обнаружено, что септированные контакты между клетками ЗСЦ разрушаются при активации сигнальных путей Toll или Imd или в ответ на бактериальную инфекцию. В норме кластер клеток ЗСЦ непроницаем для крупномолекулярных красителей. Однако инактивация белков плотных септированных межклеточных контактов Coracle (Cora) или нейрексина IV (Neurexin IV, NrxIV) приводит к проницаемости клеток ЗСЦ. Повышенная проницаемость способствует увеличению числа клеток ЗСЦ, уменьшению количества прогемоцитов и способствует дифференцировке плазматоцитов и кристаллических клеток. Потеря такого барьера нарушает передачу сигналов лигандов Wg и Dpp [151] как внутри ниши, так и сигналов прогемоцитам. Показано также, что в регуляции секреции Hg участвуют щелевые контакты (gap junctions, GJ), а также Са²⁺-сигнальный путь [128].

В дополнение к этому показано, что сигналы от соседствующих с ЗСЦ клеток ДС регулируют пролиферацию, функционирование и локализацию клеток ЗСЦ. Так, гликопротеин Slit секретируется клетками дорсального сосуда. Рецепторы данного белка Roundabout 1 и 2 (Robo 1 и 2) экспрессируются на клетках ЗСЦ. Взаимодействие Slit с Robo 1 и 2 регулирует пролиферацию и локализацию клеток ЗСЦ [33, 126, 152]. Подавление функции Robo в ЗСЦ или экспрессии Slit в клетках дорсального сосуда увеличивает количество клеток ЗСЦ и вызывает их распространение вглубь гемопоэтического органа, в том числе посредством подавления экспрессии Е-кад [126]. В свою очередь, Robo активирует сигнальный путь Dpp/TGF-beta, что приводит к подавлению экспрессии ТФ Мус и пролиферации клеток ЗСЦ (рис. 2) [33, 123, 126].

Важным открытием стало то, что сигналы извне, а именно от нервной и гуморальной систем, непосредственно влияют на состояние и функцию клеток гемопоэтической ниши ЗСЦ. Инсулиноподобные пептиды, экспрессирующиеся в нейронах, клетках глии и жирового тела [153], регулируют пролиферацию и рост клеток ЗСЦ посредством активации инсулинового сигнального пути [31, 32, 104, 122, 154]. Ингибирование данного сигнального пути в результате инактивации различных его компонентов: инсулинового рецептора (InR) или Akt1, или фосфоинозитид-зависимой киназы 1 (Pdk1), или фосфоинозитид-3-киназы (PI3K), уменьшает количество клеток ЗСЦ. Кроме того, показано, что в этом процессе участвует активация сигнального пути рапамицина. Дальнейшие исследования позволят более детально установить взаимодействия между обнаруженными сигнальными путями в регуляции поддержания и функционирования клеток гемопоэтической ниши, которая является центром, регулирующим гемопоэз в ГО дрозофилы.

ЗАКЛЮЧЕНИЕ

За последние 20 лет был достигнут значительный прогресс в понимании молекулярных механизмов, регулирующих гемопоэз дрозофилы. Генетически наиболее совершенная модельная система дрозофилы позволила охарактеризовать сложные взаимодействия между сигнальными путями и транскрипционными факторами, участвующими в регуляции поддержания и дифференцировки мультипотентных клеток предшественников гемоцитов: препрогемоцитов и прогемоцитов. Данные клетки дифференцируются в процессе развития личинки в три типа зрелых гемоцитов: плазматоциты, кристаллические клетки и ламеллоциты. Показано, что у насекомых, как и у млекопитающих, в поддержании и регуляции дифференцировки гемопоэтических клетокпредшественников главную роль играет гемопоэтическая ниша – клетки ЗСЦ. Детерминация судьбы клеток гемопоэтической ниши происходит параллельно со спецификацией гемопоэтических предшественников в гемопоэтическом органе. На протяжении личиночных стадий клетки ЗСЦ координируют поддержание и дифференцировку прогемоцитов с помощью секретируемых лигандов: Hh, Pvf1, Ser, Wg/Wnt, активируя соответствующие сигнальные пути в предшественниках гемоцитов. Эти сигналы участвуют в том числе в поддержании аутокринных и паракринных сигналов (Wnt/ бета-катенин, кальциевая сигнализация, АФК, Stat92E) в прогемоцитах, активируя или подавляя поддержание прогемоцитов в недифференцированном состоянии. Прогемоциты находятся в митотически покоящимся состоянии в медуллярной зоне гемопоэтического органа. Помимо этого, показана двусторонняя, равновесная регуляция поддержания прогемоцитов с помощью сигналов от дифференцированных клеток (Pvr, Adgf-A, AdoR, PKA) и клеток гемопоэтической ниши (Hh, Pvf1). Недавние исследования с использованием секвенирования транскриптома единичных клеток показали наличие промежуточных стадий дифференцировки прогемоцитов и неохарактеризованных популяций зрелых гемоцитов. Дифференцировка прогемоцитов происходит в так называемой промежуточной зоне, где клетки

начинают делиться и становятся восприимчивыми к сигналам дифференцировки. Однако данный механизм требует дальнейшей расшифровки. Кроме того, недавние исследования показали, что клетки дорсального сосуда также служат своего рода гемопоэтической нишей, участвуя в поддержании прогемоцитов. До настоящего времени у дрозофилы не выявлены гемопоэтические стволовые клетки, способные самообновляться с помощью асимметрического деления. Однако определена наиболее наивная популяция препрогемоцитов, клетки которой регулируются клетками гемопоэтической ниши с помощью активации сигнальных путей Notch, Dpp, Pvf2/Pvr. Показано также, что, помимо поддержания предшественников гемоцитов, клетки гемопоэтической ниши участвуют в регуляции кле-

СПИСОК ЛИТЕРАТУРЫ

- 1. Morgan T.H. // Sci. Mon. 1935. V. 41. № 1. P. 5–18.
- 2. Morgan T.H. // Am. Nat. 1917. V. 51. № 609. P. 513–544.
- 3. Nefedova L.N. // Russ. J. Dev. Biol. 2020. V. 51. № 4. P. 201–211.
- 4. Osadchiy I.S., Kamalyan S.O., Tumashova K.Y., Georgiev P.G., Maksimenko O.G. // Acta Naturae. 2023. V. 15. № 2. P. 70–74.
- 5. Brand A.H., Perrimon N. // Development. 1993. V. 118. № 2. P. 401–415.
- 6. Evans C.J., Olson J.M., Ngo K.T., Kim E., Lee N.E., Kuoy E., Patananan A.N., Sitz D., Tran P., Do M.-T., et al. // Nat. Meth. 2009. V. 6. № 8. P. 603–605.
- Hu Y., Comjean A., Rodiger J., Liu Y., Gao Y., Chung V., Zirin J., Perrimon N., Mohr S.E. // Nucleic Acids Res. 2021.
 V. 49. № D1. P. D908–D915.
- 8. Cooley L., Kelley R., Spradling A. // Science. 1988. V. 239. № 4844. P. 1121–1128.
- 9. Bokel C. // Methods Mol. Biol. 2008. V. 420. P. 119-138.
- 10. Braun A., Lemaitre B., Lanot R., Zachary D., Meister M. // Genetics. 1997. V. 147. № 2. P. 623–634.
- 11. Nemudryi A.A., Valetdinova K.R., Medvedev S.P., Zakian S.M. // Acta Naturae. 2014. V. 6. № 3. P. 19–40.
- 12. Friedman A., Perrimon N. // Curr. Opin. Genet. Dev. 2004. V. 14. № 5. P. 470–476.
- Sinenko S.A., Kim E.K., Wynn R., Manfruelli P., Ando I., Wharton K.A., Perrimon N., Mathey-Prevot B. // Dev. Biol. 2004. V. 273. № 1. P. 48–62.
- 14. Kaufman T.C. // Genetics. 2017. V. 206. № 2. P. 665-689.
- 15. St Johnston D. // Nat. Rev. Genet. 2002. V. 3. № 3. P. 176–188.
- 16. Reitman Z.J., Sinenko S.A., Spana E.P., Yan H. // Blood. 2015. V. 125. № 2. P. 336–345.
- 17. Sinenko S.A., Hung T., Moroz T., Tran Q.M., Sidhu S., Cheney M.D., Speck N.A., Banerjee U. // Blood. 2010. V. 116. № 22. P. 4612–4620.
- Hales K.G., Korey C.A., Larracuente A.M., Roberts D.M. // Genetics. 2015. V. 201. № 3. P. 815–842.
- 19. Schneider D. // Nat. Rev. Genet. 2000. V. 1. № 3. P. 218–226.
- 20. Perrimon N. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. № 17. P. 9716–9717.
- 21. Celniker S.E., Rubin G.M. // Annu. Rev. Genomics Hum. Genet. 2003. V. 4. P. 89–117.

точного иммунного ответа и клеток, опосредующих меланизацию и инактивацию патогенных объектов с помощью сигнальных путей Spi/EGFR, Toll и Ser/ Notch. На основании результатов рассмотренных исследований получена уникальная картина взаимодействия молекулярных механизмов, регулирующих гемопоэз одного из представителей артропод. Генетическая система дрозофилы позволила и позволяет с высоким разрешением, по некоторым параметрам опережая модельную систему мыши, расшифровать молекулярные события, регулирующие гемопоэз. •

Исследование выполнено при финансовой поддержке Соглашения № 075-15-2021-1075 с Минобранауки от 28-09-2021.

- 22. Sinenko S.A. // Oncotarget. 2017. V. 8. № 41. P. 70452–70462.
- Yang C.S., Sinenko S.A., Thomenius M.J., Robeson A.C., Freel C.D., Horn S.R., Kornbluth S. // Cell Death Differ. 2014. V. 21. № 4. P. 604–611.
- 24. Shrestha R., Gateff E. // Dev. Growth. Differ. 1982. V. 24. № 1. P. 65–82.
- 25. Mathey-Prevot B., Perrimon N. // Cell. 1998. V. 92. № 6. P. 697–700.
- 26. Lanot R., Zachary D., Holder F., Meister M. // Dev. Biol. 2001. V. 230. № 2. P. 243–257.
- 27. Evans C.J., Hartenstein V., Banerjee U. // Dev. Cell. 2003.
 V. 5. № 5. P. 673–690.
- 28. Millar D.A., Ratcliffe N.A. // Endeavour. 1989. V. 13. № 2. P. 72–77.
- 29. Evans C.J., Sinenko S.A., Mandal L., Martinez-Agosto J.A., Hartenstein V., Banerjee U., Rolf B. Genetic Dissection of Hematopoiesis Using Drosophila as a Model System // Advances in Developmental Biology. Elsevier, 2007. P. 259.
- 30. Honti V., Csordas G., Kurucz E., Markus R., Ando I. // Dev. Comp. Immunol. 2014. V. 42. № 1. P. 47–56.
- 31. Koranteng F., Cho B., Shim J. // Mol. Cells. 2022. V. 45. № 3. P. 101–108.
- 32. Banerjee U., Girard J.R., Goins L.M., Spratford C.M. // Genetics. 2019. V. 211. № 2. P. 367–417.
- Morin-Poulard I., Tian Y., Vanzo N., Crozatier M. // Front. Immunol. 2021. V. 12. P. 719349.
- 34. Kharrat B., Csordas G., Honti V. // Int. J. Mol. Sci. 2022. V. 23. № 14. P. 7767.
- 35. Tepass U., Fessler L.I., Aziz A., Hartenstein V. // Development. 1994. V. 120. № 7. P. 1829–1837.
- 36. Holz A., Bossinger B., Strasser T., Janning W., Klapper R. // Development. 2003. V. 130. № 20. P. 4955-4962.
- 37. Honti V., Csordas G., Markus R., Kurucz E., Jankovics F., Ando I. // Mol. Immunol. 2010. V. 47. № 11–12. P. 1997–2004.
- 38. Ghosh S., Singh A., Mandal S., Mandal L. // Dev. Cell. 2015. V. 33. № 4. P. 478–488.
- 39. Srdić Ž., Reinhardt C. // Science. 1980. V. 207. № 4437. P. 1375–1377.
- 40. Gateff E. // Science. 1978. V. 200. № 4349. P. 1448-1459.
- 41. Jung S.H., Evans C.J., Uemura C., Banerjee U. // Development. 2005. V. 132. № 11. P. 2521–2533.
- 42. Rugendorff A., Younossi-Hartenstein A., Hartenstein V. //

Rouxs Arch. Dev. Biol. 1994. V. 203. № 5. P. 266–280.

- 43. Cho B., Yoon S.H., Lee D., Koranteng F., Tattikota S.G., Cha N., Shin M., Do H., Hu Y., Oh S. Y., et al. // Nat. Commun. 2020. V. 11. № 1. P. 4483.
- 44. Cattenoz P.B., Monticelli S., Pavlidaki A., Giangrande A. // Front. Cell Dev. Biol. 2021. V. 9. P. 643712.
- 45. Fu Y., Huang X., Zhang P., van de Leemput J., Han Z. // J. Genet. Genomics. 2020. V. 47. № 4. P. 175–186.
- 46. Cattenoz P.B., Sakr R., Pavlidaki A., Delaporte C., Riba A., Molina N., Hariharan N., Mukherjee T., Giangrande A. // EMBO J. 2020. V. 39. № 12. P. e104486.
- 47. Tattikota S.G., Cho B., Liu Y., Hu Y., Barrera V., Steinbaugh M.J., Yoon S.H., Comjean A., Li F., Dervis F., et al. // Elife. 2020. V. 9. P. e54818.
- 48. Russo J., Dupas S., Frey F., Carton Y., Brehelin M. // Parasitology. 1996. V. 112 (Pt 1). P. 135–142.
- 49. Brehelin M. // Cell Tissue. Res. 1982. V. 221. № 3. P. 607–615.
- 50. Charroux B., Royet J. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 24. P. 9797–9802.
- Kurucz E., Vaczi B., Markus R., Laurinyecz B., Vilmos P., Zsamboki J., Csorba K., Gateff E., Hultmark D., Ando I. // Acta Biol. Hung. 2007. V. 58 Suppl. P. 95–111.
- 52. Franc N.C., Heitzler P., Ezekowitz R.A., White K. // Science. 1999. V. 284. № 5422. P. 1991–1994.
- 53. Kocks C., Cho J. H., Nehme N., Ulvila J., Pearson A. M., Meister M., Strom C., Conto S. L., Hetru C., Stuart L. M., et al. // Cell. 2005. V. 123. № 2. P. 335–346.
- 54. Bretscher A.J., Honti V., Binggeli O., Burri O., Poidevin M., Kurucz E., Zsamboki J., Ando I., Lemaitre B. // Biol. Open. 2015. V. 4. № 3. P. 355–363.
- 55. Irving P., Ubeda J.M., Doucet D., Troxler L., Lagueux M., Zachary D., Hoffmann J.A., Hetru C., Meister M. // Cell. Microbiol. 2005. V. 7. № 3. P. 335–350.
- 56. Kurucz E., Markus R., Zsamboki J., Folkl-Medzihradszky K., Darula Z., Vilmos P., Udvardy A., Krausz I., Lukacsovich T., Gateff E., et al. // Curr. Biol. 2007. V. 17. № 7. P. 649–654.
- 1, сасси 2, се ан // Сант Бюл 2001. 1. 1. 1. 1. 016 об . 57. Баландин С.В., Овчинникова Т.В. // Биоорган. химия. 2016. Т. 42. № 3. С. 255–275.
- 58. Olofsson B., Page D.T. // Dev. Biol. 2005. V. 279. № 1. P. 233–243.
- 59. Bunt S., Hooley C., Hu N., Scahill C., Weavers H., Skaer H. // Dev. Cell. 2010. V. 19. № 2. P. 296–306.
- 60. Nelson R.E., Fessler L.I., Takagi Y., Blumberg B., Keene D.R., Olson P.F., Parker C.G., Fessler J.H. // EMBO J. 1994. V. 13. № 15. P. 3438–3447.
- 61. Defaye A., Evans I., Crozatier M., Wood W., Lemaitre B., Leulier F. // J. Innate Immun. 2009. V. 1. № 4. P. 322–334.
- 62. Sears H.C., Kennedy C.J., Garrity P.A. // Development. 2003. V. 130. № 15. P. 3557–3565.
- 63. Guillou A., Troha K., Wang H., Franc N.C., Buchon N. // PLoS Pathog. 2016. V. 12. № 10. P. e1005961.
- 64. Shia A.K., Glittenberg M., Thompson G., Weber A.N., Reichhart J.M., Ligoxygakis P. // J. Cell Sci. 2009. V. 122. № 24. P. 4505–4515.
- 65. Binggeli O., Neyen C., Poidevin M., Lemaitre B. // PLoS Pathog, 2014. V. 10. № 5. P. e1004067.
- 66. Dudzic J.P., Kondo S., Ueda R., Bergman C.M., Lemaitre B. // BMC Biol. 2015. V. 13. P. 81.
- 67. Tang H., Kambris Z., Lemaitre B., Hashimoto C. // J. Biol. Chem. 2006. V. 281. № 38. P. 28097–28104.
- 68. Nam H.J., Jang I.H., You H., Lee K.A., Lee W.J. // EMBO J. 2012. V. 31. № 5. P. 1253–1265.
- 69. Nappi A.J., Vass E., Frey F., Carton Y. // Eur. J. Cell. Biol. 1995. V. 68. № 4. P. 450–456.
- 70. Ramet M., Manfruelli P., Pearson A., Mathey-Prevot B.,

- Ezekowitz R.A. // Nature. 2002. V. 416. № 6881. P. 644–648.
- 71. Galko M.J., Krasnow M.A. // PLoS Biol. 2004. V. 2. № 8. P. E239.
- 72. Neyen C., Binggeli O., Roversi P., Bertin L., Sleiman
- M.B., Lemaitre B. // Dev. Comp. Immunol. 2015. V. 50. № 2. P. 166–174.
- 73. Rizki T.M., Rizki R.M. // Dev. Comp. Immunol. 1992. V. 16. № 2–3. P. 103–110.
- 74. Shrestha R., Gateff E. // Development, Growth and Differentiation. 1982. V. 24. № 1. P. 83–98.
- Anderl I., Vesala L., Ihalainen T.O., Vanha-Aho L.M., Ando I., Ramet M., Hultmark D. // PLoS Pathog. 2016. V. 12. № 7. P. e1005746.
- 76. Nam H.J., Jang I.H., Asano T., Lee W.J. // Mol. Cells. 2008. V. 26. № 6. P. 606–610.
- 77. Honti V., Kurucz E., Csordas G., Laurinyecz B., Markus R., Ando I. // Immunol. Lett. 2009. V. 126. № 1–2. P. 83–84.
- 78. Tokusumi T., Shoue D.A., Tokusumi Y., Stoller J.R., Schulz R.A. // Genesis. 2009. V. 47. № 11. P. 771–774.
- 79. Evans C.J., Liu T., Banerjee U. // Methods. 2014. V. 68. № 1. P. 242–251.
- 80. Rus F., Kurucz E., Markus R., Sinenko S.A., Laurinyecz B., Pataki C., Gausz J., Hegedus Z., Udvardy A., Hultmark D., et al. // Gene Expr. Patterns. 2006. V. 6. № 8. P. 928–934.
- 81. Sinenko S.A., Mathey-Prevot B. // Oncogene. 2004. V. 23. № 56. P. 9120–9128.
- 82. Semenova N.Y., Bessmel'tsev S.S., Rugal' V.I. // Klin. Onkogematol. 2014. V. 7. № 4. P. 501–510.
- Charbord P., Pouget C., Binder H., Dumont F., Stik G., Levy P., Allain F., Marchal C., Richter J., Uzan B., et al. // Cell Stem Cell. 2014. V. 15. № 3. P. 376–391.
- 84. Belyavsky A., Petinati N., Drize N. // Int. J. Mol. Sci. 2021. V. 22. № 17. P. 9231.
- 85. Comazzetto S., Shen B., Morrison S. J. // Dev. Cell. 2021. V. 56. № 13. P. 1848–1860.
- 86. Morrison S.J., Spradling A.C. // Cell. 2008. V. 132. № 4. P. 598–611.
- 87. Fuller M.T., Spradling A.C. // Science. 2007. V. 316. № 5823. P. 402–404.
- 88. Homem C.C., Knoblich J.A. // Development. 2012. V. 139. № 23. P. 4297–4310.
- 89. Micchelli C.A., Perrimon N. // Nature. 2006. V. 439. № 7075. P. 475–479.
- 90. Minakhina S., Steward R. // Development. 2010. V. 137. № 1. P. 27–31.
- 91. Dey N.S., Ramesh P., Chugh M., Mandal S., Mandal L. // Elife. 2016. V. 5. P. e18295.
- 92. Ho K.Y.L., Carr R.L., Dvoskin A.D., Tanentzapf G. // Elife. 2023. V. 12. P. e84085.
- 93. Girard J.R., Goins L.M., Vuu D.M., Sharpley M.S., Spratford C.M., Mantri S.R., Banerjee U. // Elife. 2021. V. 10. P. e67516.
- 94. Mandal L., Banerjee U., Hartenstein V. // Nat. Genet. 2004.
 V. 36. № 9. P. 1019–1023.
- 95. Medvinsky A., Dzierzak E. // Cell. 1996. V. 86. № 6. P. 897–906.
- 96. Mandal L., Martinez-Agosto J.A., Evans C.J., Hartenstein V., Banerjee U. // Nature. 2007. V. 446. № 7133. P. 320–324.
- 97. Crozatier M., Ubeda J.M., Vincent A., Meister M. // PLoS Biol. 2004. V. 2. № 8. P. E196.
- 98. Rodrigues D., Renaud Y., VijayRaghavan K., Waltzer L., Inamdar M. S. // Elife. 2021. V. 10. P. e61409.
- 99. Sinenko S.A., Mandal L., Martinez-Agosto J.A., Banerjee U. // Dev. Cell. 2009. V. 16. № 5. P. 756–763.
- 100. Owusu-Ansah E., Banerjee U. // Nature. 2009. V. 461.

№ 7263. P. 537–541.

- 101. Crozatier M., Meister M. // Cell. Microbiol. 2007. V. 9. \mathbb{N}_{2} 5. P. 1117–1126.
- 102. Krzemien J., Dubois L., Makki R., Meister M., Vincent A., Crozatier M. // Nature. 2007. V. 446. № 7133. P. 325–328.
- 103. Mondal B.C., Mukherjee T., Mandal L., Evans C.J.,
- Sinenko S.A., Martinez-Agosto J. A., Banerjee U. // Cell. 2011. V. 147. № 7. P. 1589–1600.
- 104. Tokusumi Y., Tokusumi T., Shoue D.A., Schulz R.A. // PLoS One. 2012. V. 7. № 7. P. e41604.
- 105. Lebestky T., Jung S.H., Banerjee U. // Genes Dev. 2003. V. 17. № 3. P. 348-353.
- 106. Krzemien J., Oyallon J., Crozatier M., Vincent A. // Dev. Biol. 2010. V. 346. № 2. P. 310–319.
- 107. Mohammad K., Dakik P., Medkour Y., Mitrofanova D.,
- Titorenko V.I. // Int. J. Mol. Sci. 2019. V. 20. № 9. P. 2158. 108. Hombria J.C., Brown S., Hader S., Zeidler M.P. // Dev. Biol. 2005. V. 288. № 2. P. 420-433.
- 109. Benmimoun B., Polesello C., Haenlin M., Waltzer L. // Proc. Natl. Acad. Sci. USA. 2015. V. 112. № 29. P. 9052–9057.
- 110. Oyallon J., Vanzo N., Krzemien J., Morin-Poulard I., Vincent A., Crozatier M. // PLoS One. 2016. V. 11. № 2. P. e0148978.
- 111. Grigorian M., Liu T., Banerjee U., Hartenstein V. // Dev. Biol. 2013. V. 384. № 2. P. 301–312.
- 112. Makhijani K., Alexander B., Tanaka T., Rulifson E., Bruckner K. // Development. 2011. V. 138. № 24. P. 5379– 5391.
- Goto A., Kadowaki T., Kitagawa Y. // Dev. Biol. 2003.
 V. 264. № 2. P. 582–591.
- 114. Mukherjee T., Kim W. S., Mandal L., Banerjee U. // Science. 2011. V. 332. № 6034. P. 1210–1213.
- 115. Terriente-Felix A., Li J., Collins S., Mulligan A., Reekie I., Bernard F., Krejci A., Bray S. // Development. 2013. V. 140.
 № 4. P. 926–937.
- 116. Lebestky T., Chang T., Hartenstein V., Banerjee U. // Science. 2000. V. 288. № 5463. P. 146–149.
- 117. Tokusumi T., Sorrentino R.P., Russell M., Ferrarese R., Govind S., Schulz R. A. // PLoS One. 2009. V. 4. № 7. P. e6429.
- 118. Spratford C.M., Goins L.M., Chi F., Girard J.R., Macias S.N., Ho V.W., Banerjee U. // Development. 2021. V. 148. № 24. P. 200216.
- 119. Ferguson G.B., Martinez-Agosto J.A. // Dev. Biol. 2017. V. 425. № 1. P. 21–32.
- 120. Shim J., Mukherjee T., Mondal B.C., Liu T., Young G.C., Wijewarnasuriya D.P., Banerjee U. // Cell. 2013. V. 155. № 5. P. 1141–1153.
- 121. Baldeosingh R., Gao H., Wu X., Fossett N. // Dev. Biol. 2018. V. 441. № 1. P. 132–145.
- 122. Benmimoun B., Polesello C., Waltzer L., Haenlin M. // Development. 2012. V. 139. № 10. P. 1713–1717.
- 123. Pennetier D., Oyallon J., Morin-Poulard I., Dejean S., Vincent A., Crozatier M. // Proc. Natl. Acad. Sci. USA. 2012.
 V. 109. № 9. P. 3389–3394.
- 124. Khadilkar R.J., Rodrigues D., Mote R.D., Sinha A.R., Kulkarni V., Magadi S.S., Inamdar M.S. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. № 13. P. 4898–4903.
- 125. Destalminil-Letourneau M., Morin-Poulard I., Tian Y., Vanzo N., Crozatier M. // Elife. 2021. V. 10. P. e64672.
- 126. Morin-Poulard I., Sharma A., Louradour I., Vanzo N.,

- Vincent A., Crozatier M. // Nat. Commun. 2016. V. 7. P. 11634. 127. Ramesh P., Dey N. S., Kanwal A., Mandal S., Mandal L. //
- Elife. 2021. V. 10. P. e67158.
- 128. Ho K.Y.L., An K., Carr R.L., Dvoskin A.D., Ou A.Y.J., Vogl W., Tanentzapf G. // Proc. Natl. Acad. Sci. USA. 2023. V. 120. № 45. P. e2303018120.
- 129. Sinenko S.A., Shim J., Banerjee U. // EMBO Rep. 2012. V. 13. № 1. P. 83–89.
- Louradour I., Sharma A., Morin-Poulard I., Letourneau M., Vincent A., Crozatier M., Vanzo N. // Elife. 2017. V. 6. P. e25496.
- 131. Gao H., Wu X., Fossett N. // Molecular and Cellular Biology. 2009. V. 29. № 22. P. 6086–6096.
- 132. Zhang C.U., Cadigan K.M. // Development. 2017. V. 144. № 13. P. 2415–2427.
- 133. Zhang C.U., Blauwkamp T.A., Burby P.E., Cadigan K.M. // PLoS Genet. 2014. V. 10. № 8. P. e1004509.
- 134. Goins L.M., Girard J.R., Mondal B.C., Buran S., Su C.C., Tang R., Biswas T., Banerjee U. // bioRxiv. 2023. 10.1101/2023.06.29.547151. P. 2023.2006.2029.547151.
- 135. Dragojlovic-Munther M., Martinez-Agosto J.A. // Dev. Biol. 2013. V. 384. № 2. P. 313–330.
- 136. Zhang W., Wang D., Si J., Jin L. H., Hao Y. // Cells. 2023. V. 12. № 4. P. 661.
- 137. Makki R., Meister M., Pennetier D., Ubeda J.M., Braun A., Daburon V., Krzemien J., Bourbon H.M., Zhou R., Vincent A., et al. // PLoS Biol. 2010. V. 8. № 8. P. e1000441.
- 138. Flaherty M.S., Salis P., Evans C. J., Ekas L. A., Marouf A., Zavadil J., Banerjee U., Bach E.A. // Dev. Cell. 2010. V. 18. № 4. P. 556-568.
- 139. Minakhina S., Tan W., Steward R. // Dev. Biol. 2011. V. 352. № 2. P. 308–316.
- 140. Gao H., Wu X., Fossett N. // PLoS One. 2013. V. 8. № 9. P. e74684.
- 141. Kulkarni V., Khadilkar R.J., Magadi S.S., Inamdar M.S. // PLoS One. 2011. V. 6. № 11. P. e27667.
- 142. Sinha A., Khadilkar R.J., S V.K., Roychowdhury Sinha A., Inamdar M. S. // Cell Rep. 2013. V. 4. № 4. P. 649–658.
- 143. Sinenko S.A., Starkova T.Y., Kuzmin A.A., Tomilin A.N. // Front. Cell Dev. Biol. 2021. V. 9. P. 714370.
- 144. Lennicke C., Cocheme H.M. // Mol. Cell. 2021. V. 81. № 18. P. 3691–3707.
- 145. Gao H., Wu X., Simon L., Fossett N. // PLoS One. 2014. V. 9. № 9. P. e107768.
- 146. Cho B., Shin M., Chang E., Son S., Shin I., Shim J. // Dev. Cell. 2024. V. 59. № 8. P. 1075–1090.
- 147. Dolezal T., Dolezelova E., Zurovec M., Bryant P. J. // PLoS Biol. 2005. V. 3. № 7. P. e201.
- 148. Bajgar A., Dolezal T. // PLoS Pathog. 2018. V. 14. № 4. P. e1007022.
- 149. Belenkaya T.Y., Han C., Yan D., Opoka R.J., Khodoun M., Liu H., Lin X. // Cell. 2004. V. 119. № 2. P. 231–244.
- 150. Hao Y., Jin L.H. // Elife. 2017. V. 6. P. e25094.
- 151. Khadilkar R.J., Vogl W., Goodwin K., Tanentzapf G. // Elife. 2017. V. 6. P. e28081.
- 152. Labrosse C., Eslin P., Doury G., Drezen J.M., Poirie M. // J. Insect Physiol. 2005. V. 51. № 2. P. 161–170.
- 153. Nassel D.R., Liu Y., Luo J. // Gen. Comp. Endocrinol. 2015. V. 221. P. 255–266.
- 154. Dragojlovic-Munther M., Martinez-Agosto J.A. // Development. 2012. V. 139. № 20. P. 3752–3763.