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ABSTRACT Low-grade gliomas are divided into two main genetic phenotypes based on the presence or ab-
sence of mutations in the isocitrate dehydrogenase (IDH) genes. The mutated IDH phenotype (IDHmut), in 
contrast to the wild-type phenotype (IDHwt), is characterized by a more positive response to pharmacolog-
ical intervention and a significantly longer survival time. In this study, we analyzed the differential co-ex-
pression of 225,000 microRNA–mRNA pairs at the level of correlations between microRNA levels and their 
potential mRNA targets. Analysis of the associative relationships of individual representatives of the selected 
pairs revealed that the level of mRNAs encoded by the ELN, ARL4C, C9orf64, PLAT, and FKBP9 genes as-
sociated with aggressive progression of glioma was increased in the IDHwt group. Meanwhile, the levels of 
miRNA-182, miRNA-455, and miRNA-891a associated with the negative prognosis in glioma were generally 
increased in the IDHmut group. Most (16/21) of the detected 21 microRNA–mRNA pairs with a significant 
difference in regulation between the IDHwt and IDHmut glioma samples had a weak or moderate positive 
correlation in IDHmut samples and a negative correlation in IDHwt samples. Therefore, our findings indicate 
that glioma samples from the IDHmut group with a positive prognosis potentially have a significantly less 
pronounced ability to microRNA-mediated regulation. We further suggest that such physiological disorders 
can lead to reduced tumor viability, resulting in an increased ability of the host to resist the spread of a ma-
lignant transformation of this genetic phenotype.
KEYWORDS LGG, low-grade gliomas, microRNA, differential expression.
ABBREVIATIONS LGG – low-grade gliomas; MN – malignant neoplasm; IDH – isocitrate dehydrogenase.
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INTRODUCTION
The incidence rate of glioma is ~ 6.6 per 100,000 pop-
ulation; glioblastoma is diagnosed in almost 50% of 
cases. The data on the incidence of malignant cere-
bral neoplasms in the Russian Federation are rath-
er inconclusive. According to various estimates, the 
incidence rate of these malignant neoplasms (MNs) 
can be as high as 23 cases per 100,000 population; the 
incidence of glioma is 10–13 cases per 100,000 popula-
tion [1]. The risk of developing this pathology increas-

es abruptly with age: from 0.15 in childhood to 15 per 
100,000 population in the elderly aged 75–84 years [2].

The reasons for the increasing incidence of glioma 
have yet to be fully elucidated. That is possibly relat-
ed to the mass-scale introduction of high-tech meth-
ods for diagnosing malignant cerebral neoplasms, such 
as magnetic resonance imaging and positron emission 
tomography, into clinical practice [2]. Multiple external 
environmental factors have been considered as a rea-
son for the emergence of glioma; however, the statis-
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tically significant rise in the risk of glioma emergence 
is now believed to be associated exclusively with ion-
izing radiation [3–5].

MicroRNAs are small noncoding RNA molecules 
that regulate gene expression by binding to mRNA 
targets, thus causing their degradation or transla-
tion inhibition [6]. Numerous studies have revealed 
significant changes in microRNA expression dur-
ing malignant transformation. Taking these results 
into account, microRNAs are currently being offered 
as potential diagnostic or prognostic biomarkers. 
Expression of microRNAs in humans with malignant 
neoplasms is disrupted via different mechanisms such 
as amplification or deletion of microRNA genes, ab-
normalities in microRNA transcription regulation, as 
well as epigenetic changes and defects in the mecha-
nisms of microRNA processing. microRNAs can be 
classified as oncogenes or tumor suppressor genes.

The genetic features of gliomas are extensively 
used for tumor classification and selection of the op-
timal treatment strategy. Several attempts to charac-
terize low-grade gliomas with wild-type and mutated 
isocitrate dehydrogenase (IDH) genes using microR-
NA signatures have been made [7–9]. In this study, 
we investigated the correlation patterns of microRNA 
co-expression with their potential targeted transcripts 
in patients with low-grade gliomas with wild-type 
and mutated IDH phenotypes.

EXPERIMENTAL

Data Sources
The TCGA-LGG cohort (https://portal.gdc.cancer.gov/
projects/TCGA-LGG) containing the versatile genome 
sequencing data of individual patients with LGG, as 
well as data on gene and miRNA expression, was 
used as the source data to analyze low-grade gliomas.

Software
The analysis was conducted using standard tools for 
processing transcriptome data for the Python 3.10 
programming language. The packages RNAnorm 2.1.0 
and PyDESeq2 0.4.4 were used for data normalization 
and preprocessing. The correlation coefficients were 
calculated using the package SciPy v1.12.0. The sur-
vival curves were plotted using the package Lifelines 
0.28.0.

Block diagram
Figure 1A shows the block diagram of the pipeline. 
Step sequence involves filtering according to the 
gene expression level, filtering across the TargetScan 
database with a certain confidence level (con-
text++score threshold < -0.2), correlation analysis, 

and pair selection using the correlation coefficient 
level as a criterion.

RESULTS
It has been demonstrated earlier that the survival 
time of LGG patients correlates with the presence/ab-
sence of mutations in the IDH genes and presence/ab-
sence of a deletion in chromosomes 1p and 19q. Based 
on these data, it has been suggested that LGGs can be 
subdivided into three molecular subtypes: IDHwt – 
non-mutated IDH genes; IDHmut-no-codel – mutation 
in the IDH genes and absence of deletions in chromo-
somes 1p and 19q; and IDHmut-codel – mutations in 
the IDH genes and deletions in chromosomes 1p and 
19q [10]. In this study, we settled upon two groups: 
the group with the wild-type IDH phenotype and the 
group carrying mutations in the IDH genes (IDHmut). 
We used data on the survival time of individual pa-
tients and previously published data on the molecu-
lar subtypes of LGG to analyze patient survival time 
in the cohorts. The recorded Kaplan–Meier curves 
agree well with the data published previously and 
demonstrate that survival time in patients with the 
wild-type IDH genotype was much shorter than that 
in patients with the mutated IDH phenotype (Fig. 1B).

The biological role of microRNA has been conven-
tionally studied via differential gene expression anal-
ysis by isolating microRNAs characterized by signifi-
cant intergroup differences in the average expression 
levels. However, these methods fail to capture changes 
in the cases when the average expression levels of 
regulatory and targeted RNAs remain unchanged. 
Differential co-expression analysis, which detects 
gene pairs or clusters whose co-expression changes 
between groups, can be used in this case [11]. These 
changes can attest to a loss of regulation between mi-
croRNA and its mRNA target due to mutations (e.g., 
in the binding site). Such parameters as parametric 
Pearson correlation or Spearman’s rank correlation 
are used to quantify the co-expression level. By com-
paring these parameters in different groups, one can 
draw a conclusion that co-expression of a particu-
lar pair has been considerably changed. We searched 
for characteristic microRNAs whose regulatory func-
tion significantly changes in the IDHwt and IDHmut 
groups. Differential co-expression analysis revealed 
a difference in the regulation of the gene expression 
level by microRNAs potentially interacting with their 
transcripts depending on the presence/absence of mu-
tations in the IDH genes.

There is intense clinical research under way into 
LGGs; however, comprehensive analysis of large-
scale cohorts involving sequencing of tumor DNA 
and patients’ DNA, as well as analysis of gene ex-
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pression and DNA methylation, is virtually nonexis-
tent. The only study of TGG samples collected from 
530 patients has been deposited into the Cancer 
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). 
We performed pre-filtering of all the possible pairs 
for microRNA–mRNA interactions obtained both ex-
perimentally and in silico across the existing data-
bases. TargetScanHuman 8.0 (https://www.targetscan.
org) for finding mRNA targets of microRNAs was 
used as the main database. At the second stage, we 
calculated the correlation of expression between pro-
tein-coding mRNAs and all the microRNAs. Pairs for 
which Spearman’s correlation coefficient was < -0.4 
in any of the groups (IDHwt or IDHmut), which cor-
responds to a strong negative correlation (namely, 
significant effect of this microRNA on gene expres-
sion), were considered significant. The absolute dif-
ference in intergroup correlation coefficients should 
be ≥ 0.6.

The effort yielded 169 pairs (156 different mRNAs).
At the final stage, the pairs were filtered by the 

significance level of the correlation coefficient in each 
group (p < 0.05), by the mRNA expression level (≥ 2 
in the log2 (RPKM) scale), and by the difference in 
correlation coefficients (≥ 0.6). Figure 2 shows the data 
on dependence for 21 microRNA–mRNA target pairs 

that have passed through all the filtration stages. The 
expression levels for each microRNA–mRNA target 
pair in each sample are shown in a color correspond-
ing to the IDHwt and IDHmut groups. For illustra-
tive purposes, we provide linear regression for the 
IDHwt and IDHmut groups, where one can observe 
that their regulation patterns are differently direct-
ed. Color designation was used for the names of mi-
croRNA and mRNA: RNAs associated with a negative 
prognosis of LGG are shown in red; protective ones 
are shown in green. The data were obtained from 
earlier publications and are described in more detail 
in the Discussion section.

Figure 3 shows the expression levels in these 
pairs. The microRNA–mRNA pairs are clustered into 
three groups according to the prognosis of their ef-
fects on the disease course (in accordance with the 
published data); the color designation of names is 
similar to that used in Fig. 2. The expression levels 
of each pair in the samples collected from each pa-
tient, their median value for a group, and the lev-
el of significance of differential expression between 
the IDHwt and IDHmut groups calculated using the 
Mann–Whitney test are presented. Detailed analysis 
of the role of expression levels in the pairs provided 
in the Discussion section.
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Fig. 1. (A) Block diagram of the bioinformatic pipeline. (B) The survival curve of TCGA-LGG patients divided into two 
molecular subtypes: IDHwt (a group carrying no mutations in the IDH genes) and IDHmut (a group carrying mutations in 
the IDH genes)
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Fig. 2. Graphs of microRNA–mRNA correlations for 21 pairs. Black is the IDHmut group; red is the IDHwt group. Expres-
sion levels for each patient and linear regression for each group are shown. mRNAs and microRNAs associated with 
a negative prognosis of MN are marked in red; protective ones, in green. RPM – reads per million mapped reads; 
RPKM – reads per kilobase per million mapped reads
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Fig. 3. Expression levels for 21 microRNA–mRNA pairs, grouped according to known data on the positive (A) and nega-
tive (B) effects of microRNAs on the disease course. mRNAs and microRNAs associated with a negative prognosis of MN 
are shown in red; protective ones, in green. The black diagrams are the IDHmut group; the red diagrams are the IDHwt 
group 
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Table 1. A list of miRNA–mRNA pairs filtered by the difference in correlation coefficients

mRNA miRNA Correlation 
(IDHmut)

Correlation 
(IDHwt)

Difference in correlation 
coefficients

TargetScan context++ 
score

DDX18 hsa-mir-767 0.365 -0.432 0.797 -0.325

PINK1 hsa-mir-767 -0.453 0.316 0.769 -0.239

ELN hsa-mir-767 0.322 -0.442 0.764 -0.222

FKBP9 hsa-mir-218-2 0.319 -0.441 0.76 -0.243

CREB3L4 hsa-mir-186 -0.507 0.247 0.754 -0.25

ASCC1 hsa-mir-487a -0.402 0.338 0.74 -0.217

ST3GAL6 hsa-mir-767 -0.406 0.308 0.714 -0.247

MCM6 hsa-mir-140 0.199 -0.508 0.707 -0.319

RANBP3L hsa-mir-455 0.298 -0.405 0.703 -0.361

PSMB2 hsa-mir-891a -0.405 0.297 0.702 -0.319

MCM4 hsa-mir-140 0.176 -0,512 0.688 -0.311

GRPEL2 hsa-mir-29c 0.208 -0.478 0.686 -0.306

ZNF12 hsa-mir-767 0.144 -0,521 0,665 -0.215

ARL4C hsa-mir-490 0.237 -0.42 0.657 -0.241

ZCCHC17 hsa-mir-27a 0.111 -0.532 0.643 -0.221

PLAT hsa-mir-491 0.195 -0.439 0.634 -0.252

CRISPLD1 hsa-mir-767 0.12 -0.51 0.63 -0.314

CISD1 hsa-mir-16-1 0.114 -0.51 0.624 -0.451

ARID1A hsa-mir-223 0.147 -0.469 0,616 -0.232

C9orf64 hsa-mir-346 0.178 -0.438 0.616 -0.231

TMEM229A hsa-mir-182 0.129 -0.474 0.603 -0.264

Interestingly, a strong negative correlation between 
protein-coding mRNAs and miRNAs is observed in 
the group without mutations in the IDH genes and 
either no correlation or a positive correlation is ob-
served in the group of patients carrying a mutation 
in the IDH genes in the vast majority of cases, which 
potentially attests to the loss of a functional associa-
tion between miRNA and mRNA targets.

Table 1 lists the numerical data for the obtained 
pairs.

DISCUSSION
MicroRNAs are small, single-stranded noncoding 
RNAs (20–23 nucleotides long) that are involved in 
oncogenesis, as well as progression and metastatic 
spread of various tumors as they regulate a large 
number of transcripts [12]. microRNA expression is 
altered in many brain tumors, including both low-
grade gliomas and the most common and malignant 
subtypes of glioblastoma [13]. microRNAs are asso-

ciated with the key processes in gliomas such as cell 
proliferation, apoptosis, and invasion [14].

Mutations in the IDH genes are the main genet-
ic marker characterizing the aggressiveness of glio-
mas. Patients with the wild-type IDH phenotype have 
a negative prognosis, whereas mutations in the IDH 
genes are associated with increased survival time [15–
17].

This study assessed potential dysregulation of the 
physiological function of miRNA in the IDHwt and 
IDHmut groups. Most of the 21 detected miRNA–
mRNA pairs with differential co-expression (16/21) 
are characterized by either weak or moderate posi-
tive correlation between protein-coding mRNAs and 
miRNAs in IDHmut samples and by negative correla-
tion in IDHwt samples.

In high-grade gliomas, expression of miRNA-767 
(which is considered protective in glioma patients) 
is significantly lower compared to low-grade gliomas 
and healthy tissues [18, 19]. According to our data, the 



44 | ACTA NATURAE | VOL. 16 № 3 (62) 2024

RESEARCH ARTICLES

miRNA-767 level is reduced in the IDHwt group com-
pared to IDHmut and correlates negatively with the 
transcripts of such genes as DDX18 (RNA helicase), 
ELN (connective tissue protein responsible for elastic-
ity), ZNF12 (transcriptional repressor), and CRISPLD1 
(extracellular vesicle protein), while positively corre-
lating with mRNA of PINK1 (kinase involved in mito-
chondrial protein phosphorylation) and ST3GAL6 (si-
alyltransferase) in samples with the wild-type IDH1 
phenotype. Importantly, the upregulated expression 
of the ELN [20] and ST3GAL6 genes [21] is associated 
with the more aggressive type of gliomas and, there-
fore, lower survival time. Meanwhile, gliomas charac-
terized by downregulated expression of the protective 
PINK1 gene correlate with a low survival time of pa-
tients who have undergone chemotherapy or radia-
tion therapy [22]. Currently, no data are available on 
the role played by the DDX18, ZNF12, and CRISPLD1 
genes in patients with gliomas, and low-grade gliomas 
in particular.

According to the published data, expression of 
miRNA-218-2 [23], 487a [24], 891a [25], 29c [26], 27a 
[27], 182 [28], and 455 [29] is elevated in aggressive 
gliomas or is associated with a negative prognosis, 
while miRNA-140 [30], 490 [31], 346 [32], and 223 [33] 
facilitate the inhibition of tumor proliferation. The 
findings on miRNA-16-1 expression are rather incon-
clusive: its level is reduced in gliomas with the mu-
tated IDH1 phenotype compared to wild-type IDH1 
tissues; meanwhile, reduced expression of this miRNA 
contributes to tumor proliferation [34, 35]. No cred-
ible information about the role of miRNA-186 in pa-
tients with gliomas could be found. We observed a 
statistically significant difference between the studied 
IDHwt and IDHmut groups in terms of the expres-
sion of the aforementioned miRNAs for miRNA-182, 
miRNA-455, and miRNA-891a, whose levels were sig-
nificantly reduced in glioma samples in the IDHwt 
group. Contrariwise, the miRNA-455 level was in-
creased in the IDHwt group compared to IDHmut 
glioma samples.

Overexpression of the genes whose transcripts act 
as potential targets for dysregulated miRNAs in the 
IDHmut and IDHwt groups is observed in more ag-
gressive glioma types: FKBP9 [36] – CREB3L4 [37], 
MCM4, MCM6 [38], PSMB2 [39], ARID1A [40], ARL4C 
[41], GRPEL2 [42], and C9orf64 [43]. No data on the 
involvement of such genes as ASCC1, ZCCHC17 (par-
ticipates in the biogenesis of ribosomal DNA), PLAT, 
CISD1, TMEM229a and RANBP3L in the development 
and spread of any glioma types have been found. 
The conducted analysis revealed significant elevation 
of the levels of mRNAs encoding the ELN, ARL4C, 
C9orf64, PLAT, and FKBP9 proteins in IDHwt sam-
ples compared to the IDHmut group.

CONCLUSIONS
Our study has demonstrated that differential co-ex-
pression analysis can be successfully used to search 
for physiologically significant miRNA–mRNA pairs in 
groups of patients with LGGs and different IDH mu-
tational phenotypes. The revealed patterns demon-
strate that the mRNA level is elevated in the IDHwt 
group, which is typical of an aggressive progression 
of gliomas. Meanwhile, the level of miRNAs associated 
with a negative prognosis in glioma patients is gen-
erally increased in the IDHmut group, which is char-
acterized by much higher chances of survival, once 
again attesting to the intricate pattern of formation 
of transcriptional regulatory networks. Nonetheless, 
at the level of associative relationships, glioma sam-
ples from the IDHmut group with a positive prognosis 
have a much smaller regulation ability. These physi-
ological disruptions may reduce tumor viability and, 
therefore, improve the ability of a host to resist the 
progression of malignant neoplasms. 

This work was conducted under a subsidy from 
the Ministry of Education and Science of the 

Russian Federation (project No. 13.2251.21.0111 
(075-15-2021-1033)).
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