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ABSTRACT Tumor cells endure continuous DNA replication stress, which opens the way to cancer develop-
ment. Despite previous research, the prognostic implications of DNA replication stress on lung adenocar-
cinoma (LUAD) have yet to be investigated. Here, we aimed to investigate the potential of DNA replication 
stress-related genes (DNARSs) in predicting the prognosis of individuals with LUAD. Differentially expressed 
genes (DEGs) originated from the TCGA-LUAD dataset, and we constructed a 10-gene LUAD prognostic 
model based on DNARSs-related DEGs (DRSDs) using Cox regression analysis. The receiver operating char-
acteristic (ROC) curve demonstrated excellent predictive capability for the LUAD prognostic model, while the 
Kaplan-Meier survival curve indicated a poorer prognosis in a high-risk (HR) group. Combined with clinical 
data, the Riskscore was found to be an independent predictor of LUAD prognosis. By incorporating Riskscore 
and clinical data, we developed a nomogram that demonstrated a capacity to predict overall survival and 
exhibited clinical utility, which was validated through the calibration curve, ROC curve, and decision curve 
analysis curve tests, confirming its effectiveness in prognostic evaluation. Immune analysis revealed that in-
dividuals belonging to the low-risk (LR) group exhibited a greater abundance of immune cell infiltration and 
higher levels of immune function. We calculated the immunopheno score and TIDE scores and tested them 
on the IMvigor210 and GSE78220 cohorts and found that individuals categorized in the LR group exhibited 
a higher likelihood of deriving therapeutic benefits from immunotherapy intervention. Additionally, we pre-
dicted that patients classified in the HR group would demonstrate enhanced sensitivity to Docetaxel using 
anti-tumor drugs. To summarize, we successfully developed and validated a prognostic model for LUAD by 
incorporating DNA replication stress as a key factor.
KEYWORDS DNA replication stress, lung adenocarcinoma, prognostic model, immunotherapy response, an-
ti-tumor drug prediction.

INTRODUCTION
Lung cancer (LC) is a highly heterogeneous and le-
thal malignancy, representing a significant contribu-
tor to cancer incidence and mortality rates [1]. Lung 
adenocarcinoma (LUAD) stands as the predominant 
subtype of LC [2]. Surgery and radiation therapy of-
fer hope for curing LUAD patients, while chemo-
therapy, targeted therapy, and immunotherapy can 
maximize the improvement of tumor prognosis. 
However, the prognosis for patients with LUAD still 
poses a significant challenge, with a relatively low 
long-term survival rate [3]. Parameters such as tu-
mor size, TNM staging, and tumor grading cannot 
meet the demands of prognosis prediction and more 
precise treatment guidance, and finding new evalu-
ation methods is a pressing need for precision med-

icine. The establishment of robust prognostic risk 
models holds the potential to significantly enhance 
our ability to forecast the prognosis of individuals 
diagnosed with LUAD.

The preservation of genome integrity heavily re-
lies on the integrity and accuracy of DNA replication. 
However, the DNA replication process constantly 
faces challenges from various intrinsic and extrinsic 
stresses, including DNA damage and other factors, 
which can pose threats to overall genomic stability 
[4]. Various obstacles that delay, prevent, or termi-
nate DNA replication are defined as DNA replication 
stress [5]. DNA replication stress activated by onco-
gene abnormalities is an important factor affecting 
cancer progression. On the one hand, it abets genom-
ic instability, advancing cancer development. On the 
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other hand, it retards cell proliferation and triggers 
anti-cancer defense mechanisms to induce cell ap-
optosis or senescence [6]. Tumor cells frequently ex-
hibit a prominent characteristic of chronic replication 
stress, which arises from the persistent presence of 
replication stress sources due to impaired replication 
stress responses, diminished repair protein activity, 
and ongoing proliferation signal transduction. This 
chronic replication stress contributes significantly 
to the genomic instability and aberrant cell prolif-
eration observed in tumor cells [7]. Previous studies 
have found that the DNA replication stress-related 
genes POLQ, PLK51, RAD6, CLASPIN, and CDC14 
can predict the prognosis of early and mid-stage 
non-small cell LC (NSCLC) patients [8]. Additionally, 
DNA replication stress is an important mechanism 
for the chemotherapy and targeted therapy of LC. 
The integration of immunotherapy with these ther-
apies represented a compelling strategy to augment 
the efficacy of LC treatment [9]. Therefore, the value 
of DNA replication stress-related genes (DNARSs) 
lies in their potential to be valuable prognostic mark-
ers and aid in predicting drug efficacy in the context 
of LUAD.

The proportion of immune cell infiltration in the 
tumor microenvironment (TME) affects cancer patient 
survival and the immunotherapy response [10, 11]. 
The expression levels of immune checkpoint inhibitors 
(ICIs) like cytotoxic T lymphocyte-associated protein 4 
(CTLA4) and programmed cell death protein 1 (PD1)/
programmed cell death ligand 1 (PD-L1) are usually 
significantly increased in hypoxic malignant tumors, 
and ICIs are more effective for a small proportion of 
LC patients [12]. However, there are currently no tools 
available for forecasting the efficacy of immunothera-
py in LUAD individuals.

We hereby used bioinformatics analysis to assess 
LUAD feature genes related to DNA replication stress 
and analyzed their roles in predicting the prognosis 
and drug efficacy for LUAD individuals.

MATERIALS AND METHODS

Data collection
Gene expression datasets of LUAD with complete 
clinical data, including age, gender, tumor grade, and 
TNM staging, were provided by The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/) and Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/) databases. The TCGA-LUAD dataset (539 cancer 
tissue samples and 59 normal tissue samples) was uti-
lized as the training set, while the GSE26939 dataset 
(116 LUAD cancer tissue samples, platform number 
GPL9053) was used as the validation set.

Twenty-one DNA replication stress features were 
obtained from references, including 982 DNARSs 
(Table 1) [13, 14].

We collected the gene sequencing data of 119 tu-
mor samples from individuals with urothelial can-
cer treated with atezolizumab (anti-PD-L1) from 
the IMvigor210 immune therapy cohort [15]. The 
GSE78220 dataset (platform number GPL11154) con-
tained tumor samples from melanoma patients treated 
with anti-PD-1 therapy and was supplied by the GEO 
database [16].

Differential analysis
The R package “edgeR” [17] was used to conduct a 
differential analysis on LUAD tissue specimens and 
normal tissue specimens in the training set, and the 
differentially expressed genes (DEGs) of LUAD were 
selected along the criteria of standard FDR < 0.05 and 
|log(FC)| > 1. The intersection of DEGs and DNARSs 
was used to obtain the LUAD differential genes asso-
ciated with DNA replication stress (DRSDs).

Prognostic model construction and evaluation
We first screened LUAD tumor patient specimens 
with a survival time greater than 30 days from the 
training set based on clinical data. Then, the univar-
iate Cox regression analysis was tapped utilizing the 
R package “survival” (https://CRAN.R-project.org/
package=survival) to select the genes in DRSDs sig-
nificantly associated with the overall survival (OS) of 
LUAD individuals. To mitigate the risk of overfitting 
in the statistical model, we employed the LASSO Cox 
analysis to identify a subset of feature genes from the 
larger pool of identified genes, utilizing the R pack-
ages “glmnet” [18] and “survival.” Feature genes were 
subjected to a multivariate Cox regression analysis to 
establish the LUAD prognostic model, using R pack-
ages “survival” and “survminer” (https://rdocumenta-
tion.org/packages/survminer/versions/0.4.9). The for-
mula for calculating the Riskscores was

Riskscore = Σ Coefficient (gene) × 
Expressionvalue (gene).

Coefficient is the coefficient of the gene. 
Expressionvalue is the relative expression level of 
gene standardized by Z-score.

Riskscore was calculated for each LUAD patient 
sample in both the training and validation sets, and 
the samples were separated as high-risk (HR) and 
low-risk (LR) groups as per the median value. The 
distribution of Riskscore scores, patient survival sta-
tus, and expression levels of feature factors in the two 
risk groups of LUAD patient specimens in the train-
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ing set were analyzed. Kaplan-Meier survival curves 
were constructed utilizing the R package “survival” to 
compare the difference in the survival rates between 
the patients in the two groups. Receiver operating 
characteristic (ROC) curves were constructed using 
the R packages “timeROC” [19] and “survival” to cal-
culate the area under the curve (AUC) and test the 
prognostic performance of the model.

Independent prognostic analysis, nomogram 
construction, and evaluation
The Riskscore from the training set was used as the 
single feature and combined with clinical data to per-
form univariate Cox and multivariate Cox regres-
sion analyses, evaluating the independent ability of 
the model to predict the patient survival chances. A 
LUAD prognostic nomogram was constructed using 
clinical factors and Riskscore, and a calibration curve 
was utilized to evaluate the disparity between the 
predicted event rate and the actual event rate. The 
R packages “rms” [20] and “survival” were used for 
this analysis. The ROC curves were depicted utiliz-
ing the R packages “timeROC” [19] and “survival” to 
evaluate the performance of the model in forecasting 
the prognosis of LUAD patients based on nomogram, 
Riskscore, age, gender, tumor grade, and TNM stag-
ing. The standardized net benefit of the nomogram 
was analyzed using the decision curve analysis (DCA).

Tumor immune analysis
Immune infiltration analysis was done utilizing the 
R packages “GSVA” [21] and “estimate” (https://R-
Forge.R-project.org/projects/estimate/). The ssGSEA 
method was used to analyze immune cell infiltration 
and function in the HR and LR groups, and the ex-
pression of human leukocyte antigen (HLA)-related 
genes was evaluated. The differences between differ-
ent risk groups were compared using the Wilcoxon 
test.

Prediction of immunotherapy response
To forecast the response of the HR and LR groups 
to immunotherapy, a series of studies were conduct-
ed. Immune checkpoints expression was analyzed in 
the two groups. The immunophenoscore (IPS) demon-
strates high accuracy in predicting the response to 
anti-CTLA-4 and anti-PD-1 therapies, making it a 
valuable tool for determining the tumor’s likelihood 
of responding to ICI therapy. The IPS score of each 
patient was obtained from The Cancer Immunome 
Atlas (TCIA, https://tcia.at), and the differences in 
IPS scores between the two groups were compared. 
Tumor Immune Dysfunction and Exclusion (TIDE) 
can forecast the response to immunotherapy by simu-

lating the main mechanisms of tumor immune escape. 
We employed TIDE score to predict the response of 
the two groups to ICI immunotherapy.

Furthermore, we used the Imvigor210 immune 
therapy cohort of individuals with urothelial cancer 
treated with the anti-PD-L1 inhibitor atezolizumab 
and the GSE78220 transcriptome dataset of melano-
ma individuals treated with anti-PD1 to test the ef-
fectiveness of the model in predicting the response 
to immunotherapy, including treatment efficacy and 
survival.

Anti-tumor drug screening
To identify potential targets and effective drugs, we 
used the CellMiner database (https://discover.nci.nih.
gov/cellminer/) and R package “pRRophetic” (https://
github.com/paulgeeleher/pRRophetic/) to screen for 
anti-tumor drugs related to the IC50 of feature genes. 
Different drug IC50 values were predicted in the two 
groups, with lower IC50 values indicating a more ef-
fective cancer treatment [22].

RESULTS

Identification of DRSDs
This study’s training set included expression data 
from 539 LUAD cancer tissue specimens and 59 nor-
mal tissue specimens. DEGs of the LUAD differen-
tial gene sets were obtained through   a differential 
analysis, including 6,005 genes. Among the analyzed 
genes, we observed differential upregulation in 4,217 
genes and differential downregulation in 1,788 genes 
(Fig. 1A, Table 2). Intersection of the DNARSs with 
982 genes and DEGs was taken to obtain the Venn di-
agram of DRSDs, which contained 279 genes (Fig. 1B).

Establishment of a prognostic model
To develop robust risk features for clinical use, a se-
ries of Cox regression analyses were conducted. First, 
163 genes that may affect OS were identified from 
the 279 genes in DRSDs through univariate Cox anal-
ysis. Then, 10 candidate genes were determined us-
ing LASSO regression (Fig. 2A,B). Multivariate Cox 
analysis showed that the coefficients of 10 feature 
genes were non-zero, with NT5E being a prognostic 
risk factor and GTF2H4 being a protective factor. The 
model was established ground on 10 genes (Fig. 2C). 
The 10-gene LUAD prognostic risk model based on 
DNA repair stress is shown below:

Riskscore = 0.05 × HMMR + 0.03 × TEX15 +  
0.04 × PLK1 + 0.10 × EX01 + 0.09 × H2BC4 +  

0.21 × H2AX - 0.08 × GTF2H4 + 0.19 × NME4 +  
0.09 × UCK2 + 0.16 × NT5E
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Fig. 1. Screening 
of DRSDs. (A) 
Volcano plot of 
DEGs related 
to LUAD. (B) 
Venn diagram of 
the intersection 
between DEGs 
and DNARSs, 
corresponding 
to DRSDs

A B

A

C

B Fig. 2. Construc-
tion of a LUAD 
prognostic mod-
el using DRSDs. 
(A) Cross-val-
idation plot of 
the logarithmic 
(λ) sequence 
in the LASSO 
model, with the 
selection of the 
best parame-
ter (lambda) 
indicated by the 
first black dotted 
line. (B) LASSO 
coefficient 
spectrum of 
10 OS-related 
genes. (C) For-
est plot of the 
multivariate Cox 
regression analy-
sis based on the 
10 feature genes 
in DRSDs
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Evaluation of the prognostic model
The Riskscore of LUAD samples in both the train-
ing and validation sets were computed by utilizing 
the LUAD prognostic risk model, and specimens 
were divided into HR and LR groups accordingly. 
The distribution of Riskscore values and survival 
status within the training set revealed that patients 
in the HR group exhibited a higher mortality rate 
(Fig. 3A,B). The heatmap of feature gene expression 
in the training set samples showed that all genes 
except GTF2H4 were highly expressed in the HR 
group (Fig. 3C). From the training set, we found 
that the survival rate of HR patients was lower 
(P < 0.05), indicating better overall prognosis for LR 
individuals (Fig. 3D). The ROC curve of the train-
ing set showed that the AUC values for 1-, 3-, and 
5-year were between 0.67 and 0.74, indicating good 
sensitivity and specificity of the risk model (Fig. 3E). 
External validation of the validation set showed that 
patients in the HR group had a lower survival rate 
than those in the LR group (P < 0.05) (Fig. 3F). The 
ROC curve of the validation set showed the AUC 
values for 1-, 3-, and 5-year were between 0.69 and 
0.73, proving that the risk model also did well in 
the validation set (Fig. 3G). In summary, the LUAD 
prognostic model based on DRSDs exhibits high ac-
curacy and reliability in predicting patient likelihood 
of survival.

Independent prognostic analysis
To examine the independent impact of Riskscore on 
the survival of LUAD patients, we conducted both 
univariate and multivariate Cox analyses. These anal-
yses involved incorporating the patients’ Riskscore 
along with other relevant clinical-pathological indi-
cators. The findings revealed that Riskscore inde-
pendently served as a prognostic factor for LUAD 
patients’ OS (Fig. 4A,B). Then, we combined Riskscore 
with prognostic clinical features to construct a nomo-
gram for a more comprehensive prediction of patient 
chances of survival (Fig. 4C). According to the calibra-
tion curve, the nomogram predicted the OS of LUAD 
individuals at 1-, 3-, and 5-year with little difference 
from the ideal model (Fig. 4D–F). The ROC curve il-
lustrated that the AUC values of Riskscore and the 
nomogram were 0.7 and 0.73, respectively, higher than 
those of other clinical factors, indicating good prog-
nostic predictive ability (Fig. 4G). We analyzed the 
clinical net benefit of the nomogram via DCA curve 
analysis, which showed that the nomogram was of 
clinical utility in forecasting the prognosis of LUAD 
individuals (Fig. 4H). Therefore, the nomogram estab-
lished here helped predict the survival probability of 
LUAD patients.

Tumor immune cell infiltration
Tumor immune cell infiltration is tightly linked to tu-
mor progression [23]. By analyzing the immune cell 
infiltration and immune-related functional pathways 
between the two groups, we probed the disparities in 
the immune activity status between the two groups 
(Fig. 5A,B). The proportions of immune cell infiltration 
of dendritic cells (aDCs, iDCs), B_cells, Mast_cells, 
Neutrophils, T_helper_cells, and TIL were tellingly 
downregulated in the HR group (P < 0.05) (Fig. 5A). 
The immune-related pathway APC_co-inhibition was 
notably upregulated, while HLA and Type_II_IFN_
Response were significantly downregulated in the 
same group (P < 0.05) (Fig. 5B). In addition, most 
HLA genes were significantly downregulated in the 
same group (P < 0.05) (Fig. 5C). In summary, the pro-
portion of immune cell infiltration in HR LUAD pa-
tients was lower compared to that in the LR group.

Prediction of immunotherapy response
The Riskscore of LUAD individuals is tightly linked 
to their immune function, suggesting that the HR and 
LR groups may have different responses to immuno-
therapy. Therefore, we further explored the ability of 
the prognostic model to predict the immunotherapy 
response of cancer individuals. Expression of most im-
mune checkpoints was notably higher in the LR group, 
with significant differences (P < 0.05) (Fig. 6A). The 
IPS score indicated that individuals in the LR group 
exhibited a better response to CTLA-4 and anti-PD-1 
treatment, denoting that LR LUAD individuals had 
stronger immunogenicity and were more likely to 
benefit from immune therapy (P < 0.05) (Fig. 6B). LR 
LUAD individuals with lower TIDE scores indicated a 
weaker inclination to evade the immune system and 
a stronger inclination to benefit from immune ther-
apy, with significant differences (P < 0.05) (Fig. 6C). 
Since there is currently no transcriptome data on the 
response of LUAD individuals to ICI treatment, we 
used other cancer data to ascertain the performance of 
the model in predicting the immunotherapy response. 
Using the IMvigor210 and GSE78220 datasets to verify 
the response of the HR and LR groups, we found that 
the samples responsive to immunotherapy in the LR 
group were higher than those in the HR group (Fig. 
6D–E), and that OS of the LR group was tellingly bet-
ter than that of the HR group, showing a better surviv-
al trend (Fig. 6F–G). In summary, LR LUAD patients 
displayed a greater likelihood of responding to immu-
notherapy than HR patients and had a better prognosis.

Prediction of potential anti-cancer drugs
To mine the response of LUAD patients to anti-can-
cer drug treatment, we dissected the linkage between 
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Fig. 3. Performance evalua-
tion of the prognostic model in 
predicting the prognosis risk of 
LUAD patients. (A) Distribution 
of Riskscore values in the TCGA 
training set, with the dotted line 
indicating the optimal threshold 
between the LR and HR groups. 
(B) Distribution of survival status 
in the TCGA training set, with the 
dotted line indicating the optimal 
threshold between the LR and HR 
groups. (C) Heatmap of the ex-
pression levels of the 10 feature 
genes in the TCGA training set. 
(D) Kaplan-Meier survival curve 
in the TCGA training set. (E) ROC 
curve in the TCGA training set. 
(F) Kaplan-Meier survival curve in 
the GEO validation set. (G) ROC 
curve in the GEO validation set
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Fig. 4. Independent prognosis analysis of Riskscore in LUAD patients in the TCGA training set. (A) Forest plot of the 
univariate Cox regression analysis combining Riskscore with clinical information. (B) Forest plot of the multivariate Cox 
regression analysis combining Riskscore and clinical information on LUAD patients. (C) Nomogram constructed by com-
bining Riskscore and clinical information. (D), (E), and (F) Calibration curves for predicting the risk of 1-, 3-, and 5-year 
death, respectively. (G) Clinical features, Riskscore, and ROC curve used to diagnose Nomograms. (H) DCA curve for 
diagnosing Nomograms
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the expression of prognostic feature genes and the 
IC50 values of drug antagonists, with results display-
ing a significant positive linkage between the expres-
sion of the PLK1 and IC50 value of 5-Fluoro deoxy 
uridine 10mer (cor = 0.510), while the expression 
level of NT5E showed a significant negative linkage 
with the IC50 values of Idarubicin (cor = -0.510), XR-
5944 (cor = -0.501), and Fluorouracil (cor = -0.499) 
(Fig. 7A). Furthermore, we investigated the association 
between the prognostic risk and drug sensitivity. The 
findings revealed that the HR group, characterized 
by a poor OS, exhibited heightened sensitivity to the 
drugs FTI-277, JNK Inhibitor VIII, CCT018159, and 
Docetaxel (P < 0.001) (Fig. 7B).

CONCLUSION
Despite the availability of various treatments like 
surgery, radiotherapy, chemotherapy, targeted thera-
py, and immunotherapy, the mortality rate of LUAD 
remains high. DNA replication abnormalities are the 
main cause of genomic instability leading to tumor 
initiation and progression [24]. DNA replication stress 
not only affects the autonomous cell response of can-
cer patients, but also alters the cellular microenvi-
ronment, activates innate immune responses, and 

helps the organism to protect itself against proliferat-
ing damaged cells [25]. Here, we developed a LUAD 
prognosis model grounded in DNARSs. In the train-
ing and validation cohorts, our novel LUAD prognosis 
model showed a reliable prognostic prediction perfor-
mance and can serve as an independent prognostic 
tool for LUAD patients. The nomogram grounded in 
the Riskscore and clinical factors exhibits reliability 
and accuracy in forecasting the survival probability of 
LUAD individuals. The LR group of LUAD patients is 
characterized by high anti-tumor immune cell infiltra-
tion and high immune activity status.

Based on the Cox regression analysis, we obtained 
ten DNA replication stress biomarkers that impact the 
prognosis for LUAD individuals, including HMMR, 
TEX15, PLK1, EXO1, H2BC4, H2AX, NME4, UCK2, 
NT5E, and GTF2H4. The expression levels of HMMR, 
TEX15, PLK1, EXO1, H2BC4, H2AX, NME4, UCK2, 
and NT5E increased with increase in Riskscore. High 
expression of HMMR fosters malignant behaviors 
in LUAD individuals [26]. PLK1 mediates the phos-
phorylation of SKA3 and enhances the stability of 
the SKA3 protein, thereby promoting the malignant 
progression of LC [27]. The high expression of the 
EXO1 gene is an independent risk factor for a poor 

A

C

B

Fig. 5. Analysis of immune cell infiltration and immune 
function between the high-risk and LR groups of LUAD 
patients using ssGSEA. (A) Analysis of immune cell infil-
tration. (B) Analysis of immune function. (C) Expression 
level analysis of HLA genes
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prognosis of LUAD, and EXO1 can also predict the 
response to chemotherapy [28–30]. Phosphorylated 
γH2AX at Ser-139 is a cellular response to DNA dou-
ble-strand breaks and DNA damage, which features 
in tumor cell apoptosis. Studies have reported that the 
expression of γH2AX can predict the efficacy of ICI 
treatment in LUAD [31, 32]. NME4 affects NSCLC 
by overcoming cell cycle arrest and enhancing cell 
proliferation [33]. UCK2 is a rate-limiting enzyme in 

A

C D

G

E

F

B

Fig. 6. Analysis of the immunotherapy response in the HR and LR groups of LUAD patients. (A) Boxplot of immune 
checkpoint expression levels in the HR and LR groups of LUAD patients. (B) Violin plot of IPS scores in the HR and LR 
groups of LUAD patients. (C) Violin plot of TIDE scores in the HR and LR groups of LUAD patients. (D) ICI treatment re-
sponse of the HR and LR groups of LUAD patients in the iMvigor210 cohort. (E) ICI treatment response of the HR and LR 
groups of LUAD patients in the GSE78220 cohort. (F–G) Kaplan-Meier survival curve of the HR and LR groups of LUAD 
patients in the iMvigor210 (F) and GSE78220 cohorts (G), respectively

the pyrimidine salvage synthesis pathway, which pro-
motes LC cell proliferation and migration [34, 35]. The 
NT5E gene encodes CD73, which promotes LUAD 
proliferation and metastasis via the EGFR/AKT/
mTOR axis [36, 37]. Additionally, an upregulation in 
the expression of GTF2H4 results in a correspond-
ing decrease in Riskscore. As research has revealed, a 
decreased expression of GTF2H4 is associated with a 
decreased DNA repair capacity. Genetic variations in 
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A B

Fig. 7. Prediction of the response of LUAD patients to anticancer drug inhibitors. (A) Correlation between the expres-
sion levels of feature genes in LUAD and the IC

50
 values of patients to drug inhibitors. (B) Prediction of the treatment 

response of LUAD patients to FTI-277, JNK Inhibitor VIII, CCT018159, and Docetaxel in the HR and LR groups of LUAD 
patients

GTF2H4 raise the risk of LC, and GTF2H4 is a poten-
tial predictor of clinical outcomes of platinum-based 
chemotherapy in NSCLC patients [38, 39]. Although 
the effects of TEX15 and H2BC4 on LUAD are un-
known, the effects of other DNA replication stress bi-
omarkers on the risk of LUAD patient prognosis echo 
the findings of this study.

ICI therapy has greatly improved the dilemma of 
cancer treatment, but the probability of a response to 
ICI therapy in LUAD individuals remains compara-
tively low, while the majority of cancer patients may 
not derive substantial benefits from immunotherapy 
drugs [40]. Compared with HR LUAD patients, LR 
individuals have higher IPS and significantly lower 
TIDE scores, indicating that LR LUAD individuals 
display a greater likelihood of benefiting from immu-
notherapy. In addition, based on prognostic genes and 
prognostic risk grouping, it is helpful to highlight the 
efficacy of chemotherapy drugs widely used in the 
clinical treatment of LUAD. Idarubicin is an anthracy-
cline chemotherapy drug commonly used to treat ma-
lignant tumors like LC and leukemia [41]. Our results 
showed that LUAD patients with high expression of 
NT5E were more sensitive to Idarubicin. Docetaxel be-
longs to the taxane class of chemotherapy drugs and 
is utilized to treat non-small cell lung cancer. They 
stabilize microtubules by preventing depolymerization 

and cause cell death [42]. Research has shown that 
LUAD individuals with a high Riskscore are more 
sensitive to Docetaxel. In addition, research found 
that the DNA-targeted drugs XR5944 [43], HSP90, 
and DDX39B inhibitor CCT018159 [44], farnesyl trans-
ferase inhibitor FTI-277 [45], and the JNK inhibitor 
VIII [46] with potential cancer therapeutic effects are 
related to the risk score of LUAD individuals. In sum-
mary, the LUAD prognostic risk score calculated using 
DNA replication stress biomarkers had the potential to 
predict the drug treatment response.

In conclusion, we have established a new DRSDs 
feature with the potential to forecast the immuno-
therapy response of LUAD individuals. Undeniably, 
limitations exist. Although the prognostic value of the 
DRSDs feature we established has been fully validat-
ed in the TCGA and GEO cohorts, the retrospective 
and potential biases of this study still need attention. 
Secondly, this study only conducted analyses based on 
public databases, and it is necessary to attempt more 
in vitro and in vivo experiments to study the mo-
lecular mechanisms of DNARSs affecting LUAD. In 
addition, external clinical studies are needed to deter-
mine the potential estimation accuracy of the DRSDs 
feature for the prognosis of LUAD individuals who 
have not received or have received immunotherapy. 
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