УДК 578.821

Влияние делеции гена *ati* на патогенные и иммуногенные свойства вируса осповакцины

С. Н. Якубицкий, А. А. Сергеев, К. А. Титова, И. С. Шульгина, Е. В. Старостина, М. Б. Боргоякова, Л. И. Карпенко, С. Н. Щелкунов*

Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора, Новосибирская обл., Кольцово, 630559 Россия *E-mail: snshchel@rambler.ru Поступила в редакцию 14.04.2023 Принята к печати 13.07.2023 DOI: 10.32607/actanaturae.17872

РЕФЕРАТ Среди невирионных белков вируса осповакцины (VACV) наиболее представлен поздний белок 94 кДа – укороченная форма белка внутриклеточных телец включения типа A (A-type inclusion, ATI) вируса осны коров, который имеет размер 150 кДа и кодируется геном ati. Этот белок VACV не формирует внутриклеточные АТІ, будучи при этом мажорным иммуногеном при инфекции/иммунизации VACV человека или животных, а антитела к этому белку не являются вируснейтрализующими. В представленной работе изучено влияние продукции неструктурного мажорного иммуногенного белка VACV на проявления патогенности и иммуногенности вируса при модельной инфекции мышей линии ВАLВ/с. Для направленного введения делеции в геном VACV LIVP создана рекомбинантная плазмида интеграции/делеции р Δ ati и с ее помощью рекомбинантный вирус LIVP Δ ati. Патогенность штаммов VACV LIVP и LIVP∆ati изучали на 3-недельных мышах. Интраназальное заражение мышей вирусами в дозе 10⁷ БОЕ приводило к гибели 50% животных, инфицированных исходным штаммом LIVP, тогда как после заражения штаммом LIVPΔati погибло лишь 20% мышей. Внутрикожная иммунизация 6–7-недельных мышей вирусом LIVP∆ati приводила к достоверному увеличению продукции VACVспецифичных IgG по сравнению с внутрикожной вакцинацией VACV LIVP. При этом не выявлено различий в клеточном иммунном ответе на вакцинацию мышей VACV LIVP или LIVPAati, оцениваемом методом ELISpot по числу спленоцитов, продуцирующих IFN-γ в ответ на стимуляцию вирус-специфическими пептидами. Интраназальное заражение мышей летальными дозами вируса оспы коров или вируса эктромелии на 60-й день после иммунизации изучаемыми вариантами VACV показало, что мутантный LIVPAati обусловливает более выраженный протективный эффект по сравнению с родительским LIVP.

КЛЮЧЕВЫЕ СЛОВА ортопоксвирусы, вирус осповакцины, ген *ati*, внутрикожная инъекция, иммуногенность, протективность.

СПИСОК СОКРАЩЕНИЙ СРХV – вирус оспы коров; ЕСТV – вирус эктромелии; VACV – вирус осповакцины; БОЕ – бляшкообразующая единица; в/к – внутрикожно; дпи – день после иммунизации; и/н – интраназально.

введение

Вирус осповакцины (Vaccinia virus, VACV) входит в состав рода Orthopoxvirus (семейство Poxviridae), который объединяет также такие виды, как вирус натуральной оспы (Variola virus, VARV), вирус оспы обезьян (Monkeypox virus, MPXV), вирус оспы коров (Cowpox virus, CPXV), вирус оспы верблюдов (Camelpox virus, CMLV) и некоторые другие [1, 2]. Ортопоксвирусы являются крупнейшими ДНКсодержащими вирусами млекопитающих, весь цикл развития которых проходит в цитоплазме инфицированных клеток. Представители этого рода по структуре вирионов морфологически неразличимы и антигенно близки друг другу, поэтому заражение одним видом ортопоксвирусов обеспечивает иммунную защиту от других представителей данного рода [3]. Именно поэтому использование живой вакцины на основе разных штаммов VACV позволило искоренить оспу [1, 4].

VACV, как и другие виды ортопоксвирусов, существует в двух инфекционных формах. Подавляющее большинство вирусного потомства составляют внутриклеточные зрелые вирионы (IMV), гораздо меньшую часть – внеклеточные, покрытые дополнительной оболочкой вирионы (EEV) [5, 6].

Еще в ранних работах по изучению иммунного ответа на внутрикожную (в/к) инфекцию кроликов вирусом VACV был обнаружен так называемый LS-антиген (единый белок, состоящий из термолабильного (L) и термостабильного (S) антигенных компонентов), против которого активно продуцировались антитела [7]. Высокоиммуногенный LSантиген, который не относится к вирионным белкам и синтезируется в большом количестве, выделяют из экстрактов инфицированных тканей животных. Антитела, полученные после иммунизации животных LS-антигеном, не обладают вируснейтрализующей активностью, но реагируют в тестах связывания комплемента и иммунопреципитации в геле с клиническими образцами от больных оспой и оспой обезьян [2].

В дальнейшем показали, что LS-антиген VACV размером 94 кДа – это укороченная форма белка, формирующего у CPXV внутриклеточные тельца типа A (A-type inclusion bodies, ATI). Белок ATI CPXV имеет размер 150 кДа [8], накапливается в инфицированных клетках в большом количестве на позднем этапе цикла репликации вируса (до 4% суммарного клеточного белка) и агрегирует с образованием в цитоплазме клеток гелеподобных тел, в которые могут включаться зрелые вирионы [9, 10]. Укороченные на C-конце формы этого белка размером от 92 до 96 кДа в большом количестве синтезируются в VARV, MPXV, CMLV и VACV, не образуя ATI (*puc. 1*).

Показано, что при иммунизации лабораторных животных или добровольцев VACV формируются антитела на широкий спектр вирионных белков, а также на высокоиммуногенный невирионный ATIподобный белок [11]. Т-клеточный иммунный ответ на инфекцию VACV индуцируется в основном против ранних невирионных белков [6]. Исключение составляет укороченная форма белка ATI, синтезируемая на позднем этапе цикла репликации вируса, на которую, тем не менее, формируется выраженный Т-клеточный иммунный ответ [12]. По-видимому, это обусловлено тем, что укороченный ген ati (A29L в случае VACV-LIVP, см. puc. 1) является одним из наиболее интенсивно экспрессируемых генов VACV, а кодируемый им белок продуцируется в наибольшем количестве среди невирионных белков [9].

Ген *ati* не входит в число генов, жизненно важных для VACV, так как обнаружены природные варианты этого вируса, у которых данный ген делетирован [13, 14]. На примере CPXV показано также,

Рис. 1. Сравнение ортопоксвирусных потенциальных открытых рамок считывания (OPT), входящих в состав генов *ati* (OPT A26L) и *p4c* (A27L) CPXV-GRI. Серыми стрелками обозначены размер и направление соответствующих OPT, названия которых приведены над этими стрелками для вирусов CPXV-GRI, VARV-IND, MPXV-ZAI, VACV-WR [2] и VACV-LIVP. Цифрами справа и слева от белых блоков указаны позиции соответствующей области генома вируса. Тонкими линиями обозначены делеции в геномах вирусов относительно последовательности ДНК CPXV-GRI. Укороченная форма белка ATI кодируется OPT A29L VACV-LIVP и соответствующими OPT других вирусов

что делеция гена *ati* не влияет на способность вируса размножаться как *in vitro*, так и *in vivo* [15, 16]. Однако до сих пор не изучено влияние делеции гена *ati* на иммуногенные свойства VACV.

В данной работе изучено влияние делеции гена *ati*, кодирующего мажорный иммуногенный белок VACV, антитела к которому не обладают вируснейтрализующей активностью, на патогенные и иммуногенные свойства вируса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Бактерии, вирусы и культура клеток

В работе использовали штамм Escherichia coli XL2-Blue, клон 14 штамма LIVP VACV, полученный нами ранее методом предельного разведения через бляшку из-под агарозного покрытия [17], а также вирус оспы коров (CPXV) штамм GRI-90 и вирус эктромелии (ECTV) штамм К-1, полученные из коллекции вирусов. Перевиваемая культура клеток почки африканской зеленой мартышки CV-1 получена из коллекции клеточных культур ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора. Вирусы выращивали и титровали на монослойной культуре клеток CV-1 согласно [18].

Животные

В исследованиях использовали инбредных мышей линии BALB/c, полученных из питомника Института цитологии и генетики Сибирского отделения РАН (Новосибирск). Подопытных животных содержали на стандартном рационе с достаточным количеством воды согласно ветеринарному законодательству и в соответствии с требованиями по гуманному содержанию и использованию животных в экспериментальных исследованиях (ГОСТ 33216-2014 «Руководство по содержанию и уходу за лабораторными животными. Правила содержания и ухода за лабораторными грызунами и кроликами»). Исследования и манипуляции на животных проведены с одобрения комитета по биоэтике ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора (Протокол № 02-06.2022 от 28.06.2022 г.).

Оценка патогенности штаммов VACV

В исследованиях по изучению патогенности VACV LIVP и LIVP∆ati при интраназальном (и/н) заражении использовали 3-недельных мышей линии BALB/c (по 10 животных в группе). Мышам после ингаляционного наркоза диэтиловым эфиром вводили в полость носа вируссодержащую жидкость (50 мкл, 10⁷ бляшкообразующих единиц (БОЕ)) либо физиологический раствор. За животными наблюдали в течение 22 дней и регистрировали клинические проявления инфекции и гибель.

Использовали балльную оценку выявляемых симптомов заболевания: 0 – нет признаков заболевания, 1 – легкая взъерошенность шерсти, 2 – сильная взъерошенность шерсти, 3 – сильная взъерошенность шерсти, а также сутулая поза или конъюнктивит, 4 – затрудненное дыхание или отсутствие движения, 5 – гибель.

Мышей взвешивали по отдельности каждые 2 дня. Средние арифметические значения массы тела мышей в каждой группе на временную точку рассчитывали и выражали в процентах от начального веса.

Иммунизация мышей и взятие образцов на анализы

Мышей линии BALB/с в возрасте 6−7 недель иммунизировали штаммами LIVP и LIVP∆ati VACV: внутрикожная (в/к) инъекция в дорсальную сторону хвоста (около 1 см от основания) как описано ранее [19], используя дозу вируса 10⁵ БОЕ/20 мкл/мышь. В качестве отрицательного контроля использовали мышей, которым вводили физиологический раствор.

На 7, 14, 21, 28, 42 и 56 день после иммунизации (дпи) анализировали гуморальный иммунный ответ у мышей. В каждой временной точке, указанной выше, в анализ брали по 6 мышей в группе. Кровь у мышей прижизненно забирали из ретроорбитального венозного синуса с помощью иглы 23G. Забор крови из ретроорбитального синуса не приводит к повреждению органа зрения. Взятие пробы крови является кратковременной, но болезненной процедурой, однако обезболивание не проводили, поскольку показано, что применение известных методов обезболивания или наркоза может влиять на иммунологические показатели крови животных.

Из индивидуальных образцов крови животных получали сыворотку путем осаждения форменных элементов с помощью центрифугирования с относительной центробежной силой 1000 g в течение 10 мин. Сыворотки выдерживали при температуре 56°С в течение 30 мин и хранили при температуре минус 20°С.

На 7, 14 и 21 дпи после взятия крови мышей умертвляли методом цервикальной дислокации, селезенки стерильно извлекали у каждой из 6 мышей изучаемых групп.

Выделение спленоцитов

Спленоциты выделяли путем продавливания каждой селезенки через клеточный фильтр (BD Falcon[™], CША) с использованием поршня шприца. После удаления эритроцитов с помощью буфера ACK для лизиса эритроцитов (Thermo Fisher Scientific, США), спленоциты промывали и ресуспендировали в питательной среде RPMI-1640 с добавлением 10% эмбриональной телячьей сыворотки и гентамицина (50 мкг/мл).

Определение количества продуцирующих IFN-ү клеток с использованием метода ELISpot

Интенсивность Т-клеточного иммунного ответа у иммунизированных мышей определяли по числу спленоцитов, продуцирующих IFN-ү, с помощью метода IFN-ү ELISpot. Анализ проводили с использованием наборов фирмы MABTECH (Швеция) согласно инструкции производителя. Для стимуляции клеток использовали смесь VACV-специфичных иммунодоминантных для мышей BALB/с пептидов SPYAAGYDL, SPGAAGYDL, VGPSNSPTF, KYGRLFNEI, GFIRSLQTI, KYMWCYSQV (по 20 мкг/мл каждого пептида) [20, 21]. Количество IFNγ-продуцирующих клеток подсчитывали с помощью ELISpot-ридера фирмы Carl Zeiss (Германия).

Иммуноферментный анализ сывороток крови мышей

Иммуноферментный анализ (ИФА) сывороток крови мышей выполняли согласно [18]. В качестве антигена использовали очищенный центрифугированием через сахарозную подушку препарат вирионов штамма LIVP VACV. Все исследуемые образцы сыворотки крови мышей титровали серией двукратных последовательных разбавлений с разведения 1:100 до разведения 1:12800. Повтор титрования проведен в постановке ИФА на следующий день. Для определения титров IgM и IgG использовали растворы с пероксидазными конъюгатами анти-IgM мыши и анти-IgG мыши (Sigma, CША) соответственно. Титры IgM и IgG определяли в каждом образце сыворотки крови (отдельно в каждом повторе, а затем усредняли). Вычисляли средние геометрические значения логарифмов обратного титра VACV-специфических IgG или IgM по экспериментальным группам, рассчитывали доверительные интервалы для уровня 95% вероятности совпадения каждой выборки с генеральной совокупностью.

Оценка уровня протективности у иммунизированных мышей

На 60-й дпи группы иммунизированных VACV LIVP или LIVP∆ati и контрольных животных и/н заражали CPXV GRI-90 в дозе 2.0×10⁶ БОЕ/50 мкл/мышь (6 животных в каждой группе) или ECTV K-1 в дозе 2.2×10³ БОЕ/50 мкл/мышь (6 животных в каждой группе). За животными наблюдали в течение 14 дней и регистрировали у них клинические проявления инфекции и гибель. Каждую мышь взвешивали каждые 2 дня. Средние арифметические значения массы тела мышей каждой группы на временную точку рассчитывали и выражали в процентах от начального веса.

Получали данные для групп животных, в/к иммунизированных VACV LIVP или LIVPΔati, а также групп не иммунизированных мышей и не инфицированных (отрицательный контроль) или зараженных CPXV GRI-90 или ECTV K-1 (положительный контроль).

Статистический анализ данных

Статистическую обработку и сравнение результатов проводили стандартными методами, используя пакет компьютерных программ Statistica 13.0 (StatSoft Inc. 1984-2001). Значение *P* менее 0.05 считали статистически значимым.

РЕЗУЛЬТАТЫ

Создание вируса LIVP_Δati

Направленное введение делеции в геном VACV LIVP (GenBank: KX781953.1) проводили в соответствии со схемой, приведенной на *puc.* 2. На первом этапе конструирования рекомбинантной плазмиды интеграции/делеции р Δ ati с использованием ком-

ДНК VACV (14 клон LIVP)

Рис. 2. Схема конструирования плазмиды р Δ ati и VACV LIVP Δ ati (см. объяснения в тексте). L и R – левая и правая фланкирующие ген *ati* области вирусного генома

пьютерной программы Oligo (версия 3.3) (Borland International, США) рассчитали и синтезировали олигонуклеотидные праймеры для проведения ПЦР и амплификации последовательностей ДНК VACV LIVP, фланкирующих слева и справа делетируемый участок вирусного генома (OPT A28L–A29L, положение на геноме 137618–140470 п.н.) (*puc. 1, 2*).

Левый фланкирующий фрагмент (L) получали с использованием пары праймеров 5'-**AAGCTT**GTT-TGGTAGTAGATACATATCAATATCATC-3' (**HindIII**) и 5'-**CTGCAG**GCTGACTCAATTGCATGAAGAT-3' (**PstI**), правый фланкирующий фрагмент (R) – праймеров 5'-**CTGCAG**GGGTAATTATAAGATCGTA-GATCTCC-3' (**PstI**) и 5'-**CCCGGG**ATGGCGAACAT-TATAAATTTATGG-3' (**XmaI**), а также полимеразу с редактирующими свойствами Platinum Taq DNA Ніgh Fidelity Polymerase (Invitrogen, США), а в качестве ДНК-матрицы использовали ДНК клона 14 штамма LIVP VACV. Полученные целевые фрагменты L и R очищали, используя QIAquick Gel Extraction Kit (QIAGEN, Нидерланды), встраивали в векторный HindIII–ХтаІ-фрагмент pMGC20-gpt (*puc. 2*) и клонировали, используя трансформацию компетентных клеток *E. coli* штамм XL2-Blue и ампициллин в качестве селективного маркера. Правильность структуры рекомбинантной плазмиды р Δ ati подтверждали секвенированием.

На следующем этапе работы монослой клеток CV-1 инфицировали VACV LIVP и трансфицировали рекомбинантной плазмидой рДаti в условиях gptселекции рекомбинантов VACV как описано ранее [17]. В результате единичного кроссинговера плазмиды интеграции и вирусной ДНК образовывался рекомбинантный вирусный геном, содержащий как селективный ген gpt, так и последовательности, представляющие собой сегмент вирусного генома с целевой делецией и этот же сегмент без делеции (рис. 2). Такая генетическая конструкция с длинными прямыми повторами (R, R' и L, L') нестабильна и может существовать лишь под селективным давлением. После снятия селективного давления по гену gpt и внутримолекулярной рекомбинации по районам R-R' образовался рекомбинантный вирус LIVPΔati (*puc.* 2). Клоны данного варианта вируса выявляли ПЦР-анализом с последующим секвенированием вирусной ДНК.

Оценка патогенности вирусов LIVP и LIVP∆ati при интраназальном заражении мышей

При изучении патогенности штаммов VACV LIVP и LIVPΔati использовали 3-недельных мышей линии BALB/с. Осуществляли и/н заражение мышей (10 животных в группе) вирусами в дозе 107 БОЕ. За животными наблюдали в течение 22 дней, каждые 2 дня каждую мышь взвешивали и регистрировали клинические проявления инфекции и гибель. У мышей, зараженных VACV LIVP, выраженные клинические проявления инфекции выявляли, начиная с 4-го дня с максимумом на 6-й день, выздоровление наступало после 10-го дня (рис. 3Б). Заболевание сопровождалось существенным снижением массы тела (*puc.* 3A). Вирус LIVP Δ ati в тех же условиях вызывал менее выраженные клинические проявления инфекции (рис. 3Б) и меньшее снижение массы тела по сравнению с группой мышей, инфицированных LIVP (puc. 3A), хотя и без статистически значимых различий. Заражение мышей штаммом LIVP приводило к гибели 50% животных, тогда как после заражения штаммом LIVPΔati погибло лишь 20% мышей (рис. 4).

Полученные результаты указывают на снижение патогенности VACV LIVP с делецией гена *ati* (*puc.* 2).

Рис. 3. Динамика изменения массы тела мышей (A) и клинических проявлений инфекции (Б) после и/н заражения вирусами LIVP (2) или LIVP∆ati (3) в дозе 10⁷ БОЕ. Приведены данные для групп из 10 животных, зараженных соответствующими вирусами, а также контрольной группы (1)

Анализ развития клеточного иммунного ответа на вакцинацию мышей вариантами VACV

Интенсивность клеточного иммунного ответа у мышей, в/к иммунизированных LIVP или LIVP Δ ati, определяли на 7, 14 и 21 дпи по числу спленоцитов, продуцирующих IFN- γ в ответ на стимуляцию вирус-специфическими пептидами, с помощью метода IFN- γ ELISpot. В каждой временной точке анализировали по 6 животных в группе. Результаты, представленные на *рис.* 5, показывают, что высокий уровень клеточного иммунного ответа наблюдался уже на 7 дпи, пик которого приходился на 14 дпи со значительным снижением к 21 дпи. Динамика и уровень клеточного иммунного ответа совпадали у обоих штаммов VACV.

Рис. 4. Динамика гибели мышей, и/н зараженных вирусами LIVP (2) или LIVPΔati (3) в дозе 10⁷ БОЕ. Контрольная группа – неинфицированные животные (1)

Сравнение динамики развития гуморального иммунного ответа на вакцинацию мышей вирусами LIVP и LIVPΔati

Уровень VACV-специфичных IgM и IgG в сыворотках крови мышей, в/к иммунизированных LIVP или LIVP∆ati, определяли методом ИФА на 7, 14, 21, 28, 42 и 56 дпи.

На 7 дпи выявлен относительно высокий уровень IgM, который достигал максимума на 14 дпи, а затем снижался. По динамике и уровню продукции вирион-специфичных IgM оба штамма VACV не различались (*puc. 6A*).

Активный синтез VACV-специфичных IgG наблюдали на 14 дпи с последующим увеличением уровня антител на 21-28 дпи, который оставался высоким все время наблюдения (до 56 дпи, *рис.* 6*Б*) у мышей, иммунизированных LIVP Δ ati, но снижался у мышей, вакцинированных LIVP. По среднегеометрическим значениям обратных титров IgG на 28, 42 и 56 дпи LIVP Δ ati заметно превосходил LIVP, и эти различия были статистически значимыми на 42 и 56 дпи (*рис.* 6*Б*).

Оценка защитного эффекта вакцинации мышей вариантами VACV от повторной инфекции летальными дозами гетерологичных ортопоксвирусов

На 60-й дпи мышей, в/к иммунизированных VACV LIVP или LIVP∆ati, а также контрольных (неиммунизированных) и/н заражали либо CPXV (в дозе 2.0×10⁶ БОЕ/мышь), либо ECTV (в дозе 2.2×10³ БОЕ/мышь) (по 6 животных в группе). В течение 14 дней наблюдали за клиническими проявлениями

Рис. 5. ELISpot-анализ VACV-специфичного клеточного ответа на иммунизацию мышей линии BALB/с. ИПК – интерферон-ү-продуцирующие клетки, М – неиммунизированные мыши

Рис. 6. Титры VACV-специфичных IgM (A) и IgG (Б) в сыворотках мышей, иммунизированных вирусами LIVP (синие столбики) или LIVP∆ati (красные столбики). К – сыворотки крови мышей, которым вводили физраствор

и гибелью мышей. Использовали критерий развития VACV инфекции по величине снижения массы тела.

При заражении CPXV все мыши контрольной группы погибли через 6 дней, а животные, иммунизированные обоими вариантами VACV, выжили.

Рис. 7. Динамика изменения массы тела (A) и клинических проявлений инфекции (Б) после и/н заражения CPXV-GRI мышей, вакцинированных LIVP (2) или LIVPΔati (3), на 60-й день после иммунизации. Приведены данные для групп из 6 животных. В качестве контрольных использованы группы невакцинированных мышей как не инфицированных CPXV-GRI (1), так и зараженных этим вирусом (4). Звездочкой обозначены временные точки, в которых среднее значение массы тела в процентах от первоначального веса в группе иммунизированных LIVPΔati мышей достоверно отличается от значений в группе мышей, иммунизированных LIVP. Сравнение проводили с помощью *t*-критерия Стьюдента для независимых выборок

При этом обнаружили менее выраженное снижение массы тела и менее существенные клинические проявления у мышей, вакцинированных LIVP Δ ati, по сравнению с мышами, вакцинированными LIVP (*puc.* 7). На 10–14 дни после заражения CPXV различия в снижении массы тела между группами вакцинированных мышей были статистически значимыми (*puc.* 7*A*).

Рис. 8. Динамика гибели мышей, вакцинированных LIVP (2) или LIVP∆ati (3), после и/н заражения ECTV-K1 на 60-й день после вакцинации. Приведены данные для групп из 6 животных. В качестве контрольных использованы группы невакцинированных мышей как не инфицированных ECTV-K1 (1), так и зараженных этим вирусом (4)

При заражении иммунизированных мышей вирусом ECTV различия между группами животных были более выраженными. Все контрольные мыши погибли через 12 дней после заражения ЕСТУ; в группе, вакцинированной LIVP, выжило 83% животных, а в группе LIVP∆ati – все животные (*puc.* 8). При этом в группе LIVPΔati проявления инфекции были очень слабо выраженными и практически не сопровождались снижением массы тела (рис. 9). В то же время у мышей, вакцинированных LIVP, клинические признаки инфекционного процесса наблюдали на 6-12 дни после заражения ЕСТУ. Выявлено значительное снижение массы тела животных и достоверные отличия по этому показателю от группы мышей, вакцинированных LIVPΔati, на 8-14 дни после заражении ECTV (*puc. 9A*).

ОБСУЖДЕНИЕ

Наиболее активно из невирионных белков VACV синтезируется укороченная форма белка ATI – белок 94 кДа, который не формирует внутриклеточные ATI, но является мажорным иммуногеном при инфекции/иммунизации VACV человека или животных [11]. При этом антитела против этого белка не обладают вируснейтрализующей активностью. Влияние продукции данного неструктурного мажорного иммуногенного белка на проявление патогенности и иммуногенности VACV до сих пор не исследовано. Поэтому цель данной работы со-

Рис. 9. Динамика изменения массы тела (A) и клинических проявлений инфекции (Б) после и/н заражения ECTV-K1 мышей, вакцинированных LIVP (2) или LIVPΔati (3), на 60-й день после иммунизации. Приведены данные для групп из 6 животных. В качестве контрольных использованы группы невакцинированных мышей, не инфицированных ECTV-K1 (1) и зараженных этим вирусом (4). Звездочкой обозначены временные точки, в которых среднее значение массы тела в процентах от первоначального веса в группе иммунизированных LIVPΔati мышей достоверно отличается от значения в группе мышей, иммунизированных LIVP. Сравнение проводили с помощью *t*-критерия Стьюдента для независимых выборок

стояла в получении VACV с направленно удаленным геном *ati* и изучении свойств этого вируса на мышах.

В качестве объекта исследования использовали ранее охарактеризованный клоновый вариант LIVP VACV [17]. У LIVP ген *ati* (A26L у CPXV-GRI) распадается на три короткие потенциальные открытые рамки считывания, из которых ген A29L кодирует мажорный иммуногенный белок A29 (94 кДа) (puc. 1).

Плазмида интеграции/делеции р Δ ati, а затем штамм LIVP Δ ati получены согласно схеме, представленной на *puc.* 2.

На первом этапе сравнили патогенность штаммов LIVP и LIVP∆ati. Чувствительность мышей к ортопоксвирусам существенно зависит от их возраста [2], поэтому использовали молодых (возраст 3 недели) мышей линии BALB/с. Животных (по 10 особей в группе) и/н инфицировали вирусами, поскольку этот способ имитирует естественный путь заражения и обусловливает наибольшую чувствительность мышей к данной инфекции [22, 23].

Оказалось, что при и/н заражении молодых мышей в дозе 10⁷ БОЕ штамм LIVP индуцировал развитие клинически выраженной инфекции (*puc. 3*) с гибелью 50% животных (*puc. 4*), тогда как штамм LIVP Δ ati вызывал менее выраженные признаки заболевания (*puc. 3*) и вызывал гибель 20% мышей (*puc. 4*). Таким образом, удаление гена *ati* у VACV LIVP привело к его аттенуации по сравнению с исходным вариантом вируса. Это согласуется с ранее сформулированным предположением, что сниженная патогенность некоторых природных штаммов VACV может быть обусловлена спонтанной делецией у них гена *ati* [13], хотя это и не доказано экспериментально.

Иммуногенность VACV LIVP и LIVP Δ ati изучали на взрослых мышах (возраст 6–7 недель) со сформированной иммунной системой. Развитие VACVспецифичного клеточного иммунного ответа на в/к вакцинацию мышей оценивали с помощью метода ELISpot по числу спленоцитов, продуцирующих IFN- γ в ответ на стимуляцию пептидами. На 7 дпи уже наблюдался высокий уровень клеточного иммунного ответа, пик которого приходился на 14 дпи со значительным снижением к 21 дпи (*puc.* 5). При этом делеция гена *ati* у VACV LIVP не сказывалась на динамике развития и уровне клеточного иммунного ответа мышей на вакцинацию.

Известно, что наибольший вклад в развитие адаптивного иммунного ответа на VACV-вакцинацию вносит антительный ответ [3, 24], поэтому с помощью ИФА оценили динамику синтеза IgM и IgG, специфичных к вирионным белкам VACV, после в/к вакцинации мышей штаммами LIVP или LIVP∆ati в дозах 10⁵ БОЕ.

На 7 дпи выявлен относительно высокий уровень IgM, который достигал максимума на 14 дпи, а затем снижался. По динамике и уровню продукции вирионспецифичных IgM оба штамма VACV не различались (*puc. 6A*). Активный синтез VACV-специфичных IgG наблюдали, начиная с 14 дпи, с последующим увеличением уровня антител на 21–28 дпи. По среднегеометрическим значениям обратных титров IgG на 28, 42 и 56 дпи LIVP∆ati заметно превосходил LIVP, при этом на 42 и 56 дпи – с высокой статистической значимостью (*puc. 6Б*). Одной из вероятных причин этого может быть тот факт, что отсутствие синтеза мажорного позднего неструктурного белка А29 у LIVP∆ati «не отвлекает» иммунную систему на синтез IgG к этому белку и обусловливает больший синтез антител, специфичных к вирионным белкам VACV.

В ряде работ показано, что наибольший вклад в защиту от повторной ортопоксвирусной инфекции вносит гуморальный иммунный ответ [3, 6, 24, 25], поэтому важно было оценить протективный иммунитет, развившийся в ответ на в/к вакцинацию мышей VACV LIVP и LIVPΔati. С этой целью на 60-й дпи по 6 мышей каждой группы и/н инфицировали летальными дозами CPXV GRI-90 или ECTV K-1. Оказалось, что в обоих случаях защитный эффект вакцинации LIVPΔati был выше, чем вакцинации родительским штаммом LIVP (*puc.* 7–9), что подтверждает ранее сделанные заключения о ключевой

СПИСОК ЛИТЕРАТУРЫ

- 1. Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox and Its Eradication. World Health Organization. Geneva, Switzerland, 1988. 1460 p.
- 2. Shchelkunov S.N., Marennikova S.S., Moyer R.W. Orthopoxviruses Pathogenic for Humans. New York, USA: Springer, 2005. 425 p.
- 3. Moss B. // Immunol. Rev. 2011. V. 239. P. 8-26.
- 4. Shchelkunova G.A., Shchelkunov S.N. // Acta Naturae. 2017. V. 9. P. 4–12.
- 5. Payne L.G. // J. Gen. Virol. 1980. V. 50. P. 89-100.
- 6. Shchelkunov S.N., Shchelkunova G.A. // Acta Naturae. 2020. V. 12. P. 33–41.
- 7. Shedlovsky T., Smadel J.E. // J. Exp. Med. 1942. V. 75. № 2. P. 165–178.
- Funahashi S., Sato T., Shida H. // J. Gen. Virol. 1988. V. 69 (Pt 1). P. 35–47.
- 9. de Carlos A., Paez E. // Virology. 1991. V. 185. № 2. P. 768–778.
- 10. Katsafanas G.C., Moss B. // J. Virol. 2020. V. 94. N
º 4. e01671–19.
- Jones-Trower A., Garcia A., Meseda C.A., He Y., Weiss C., Kumar A., Weir J.P., Merchlinsky M. // Virology. 2005. V. 343. № 1. P. 128–140.
- Moutaftsi M., Tscharke D.C., Vaughan K., Koelle D.M., Stern L., Calvo-Calle M., Ennis F., Terajima M., Sutter G., Crotty S., et al. // Future Microbiol. 2010. V. 5. № 2. P. 221–239.
- 13. Marques J.T., Trindade G.D., Da Fonseca F.G., Dos Santos J.R., Bonjardim C.A., Ferreira P.C., Kroon E.G. // Virus Genes. 2001. V. 23. № 3. P. 291–301.
- 14. Leite J.A., Drumond B.P., de Souza Trindade G., Bonjardim C.A., Ferreira P.C.P., Kroon E.G. // Virus Genes. 2007. V. 35. № 3. P. 531–539.

роли антительного ответа в формировании защиты организма от ортопоксвирусной инфекции.

Таким образом, можно заключить, что делеция участка генома VACV LIVP в районе гена *ati* привела к снижению патогенных свойств вируса LIVP∆ati при и/н инфицировании мышей линии BALB/с и увеличению продукции вирионспецифичных IgG в ответ на в/к вакцинацию мышей данным мутантным вирусом, что привело (по сравнению с родительским LIVP) к формированию более высокого уровня защиты мышей от последующей летальной инфекции гетерологичными ортопоксвирусами CPXV и ECTV. Поэтому штамм LIVP∆ati можно рассматривать в качестве перспективного вектора для создания поливалентных рекомбинантных вакцин против различных инфекционных заболеваний. ●

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-14-00006-П).

Авторы выражают благодарность И.В. Колосовой за препараты VACV LIVP, Д.Н. Кисакову

и С.А. Пьянкову – за статистическую обработку результатов экспериментов.

- Leite J.A., da Fonseca F.G., de Souza Trindade G., Abrahao J.S., Arantes R.M., de Almeida-Leite C.M., dos Santos J.R., Guedes M.I., Ribeiro B.M., Bonjardim C.A., et al. // Arch. Virol. 2011. V. 156. № 4. P. 617–628.
- Kastenmayer R.J., Maruri-Avidal L., Americo J.L., Earl P.L., Weisberg A.S., Moss B. // Virology. 2014. V. 452–453. P. 59–66.
- 17. Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. // Acta Naturae. 2015. V. 7. P. 113–121.
- Shchelkunov S.N., Yakubitskiy S.N., Bauer T.V., Sergeev A.A., Kabanov A.S., Bulichev L.E., Yurganova I.A., Odnoshevskiy D.A., Kolosova I.V., Pyankov S.A., et al. // Acta Naturae. 2020. V. 12. P. 120–132.
- Shchelkunov S.N., Yakubitskiy S.N., Sergeev A.A., Starostina E.V., Titova K.A., Pyankov S.A., Shchelkunova G.A., Borgoyakova M.B., Zadorozhny A.M., Orlova L.A., et al. // Viruses. 2022. V. 14. P. 1453.
- 20. Oseroff C., Peters B., Pasquetto V., Moutaftsi M., Sidney J., Panchanathan V., Tscharke D.C., Maillere B., Grey H., Sette A. // J. Immunol. 2008. V. 180. P. 7193–7202.
- 21. Russell T.A., Tscharke D.C. // Immunol. Cell Biol. 2014. V. 92. P. 466–469.
- 22. Hughes L.J., Townsend M.B., Gallardo-Romero N., Hutson C.L., Patel N., Dotty J.B., Salzer J.S., Damon I.K., Carroll D.S., Satheshkumar P.S., et al. // Virology. 2020. V. 544. P. 55–63.
- Shchelkunov S.N., Yakubitskiy S.N., Sergeev A.A., Kabanov A.S., Bauer T.V., Bulichev L.E., Pyankov S.A. // Viruses. 2020. V. 12. № 8. P. 795.
- Belyakov I.M., Earl P., Dzutsev A., Kuznetsov V.A., Lemon M., Wyatt L.S., Snyder J.T., Ahlers J.D., Franchini G., Moss B., et al. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 9458–9463.
- Lambert P.H., Laurent P.E. // Vaccine. 2008. V. 26. P. 3197– 3208.