УДК 576.32/.36

Ras участвует в регуляции стабильности аденовирусного белка E1A через MAP-киназу ERK

А.В. Моршнева*, О.О. Гнедина, Д. Н. Киндт, М.В. Иготти Институт цитологии РАН, Санкт-Петербург, 194064 Россия *E-mail: 1195alisa@gmail.com Поступила в редакцию 30.12.2021 Принята к печати 18.03.2022 DOI: 10.32607/actanaturae.11675

РЕФЕРАТ Аденовирусный белок E1A, необходимый для реализации жизненного цикла вируса, активно изучается в связи с его возможным применением в качестве сенсибилизирующего агента в комбинированной терапии рака, в частности опухолей с активированным Ras. Мы изучили роль сигнального пути Ras в регуляции стабильности E1A и показали, что при сверхэкспрессии активированного Ras в E1A-экспрессирующих клетках увеличивается содержание E1A и при этом усиливается его деградация при действии ингибиторов гистоновых деацетилаз (ИГД). Установлено, что ключевым фактором стабилизации E1A является MAP-киназа ERK, которая инактивируется при действии ИГД, что приводит к деградации белка E1A. Полученные результаты указывают на то, что возможности применения аденовирусного E1A и ингибиторов деацетилаз гистонов в комбинированной терапии опухолей с активированным Ras ограничены ввиду интенсивной ИГД-зависимой деградации E1A. Тем не менее участие MAP-киназы ERK в регуляции стабильности E1A может быть использовано для подбора эффективных комбинаций препаратов на основе аденовирусного белка E1A.

КЛЮЧЕВЫЕ СЛОВА молекулярная онкология, Ras, E1A, комбинированная терапия, ингибиторы деацетилаз гистонов.

СПИСОК СОКРАЩЕНИЙ ИГД – ингибиторы гистоновых деацетилаз; E1A – белок, кодируемый ранним геном 1A аденовируса; LC – лактацистин (ингибитор протеасом); WM – вортманнин (ингибитор PI3K); NaBut – бутират натрия; Ac-Lys – ацетилированный лизин.

введение

Ранний ген *E1A* аденовируса человека типа 5 (Ad5) первым экспрессируется при аденовирусной инфекции и является критическим регулятором вирусной репликации. Белок E1A запускает экспрессию других генов Ad и создает условия, необходимые для его репликации, а именно, стимулирует переход инфицированной клетки в фазу синтеза ДНК – фазу S клеточного цикла [1]. E1A не способен непосредственно взаимодействовать с ДНК, но, будучи кофактором, он изменяет активность многих транскрипционных факторов и коактиваторов, среди которых белок ретинобластомы Rb, ингибитор циклинзависимых киназ p21/Waf, ацетилтрансферазы CBP/p300, ATF, AP1, Sp1 и др. [2].

Несмотря на вирусную природу *E1A*, научный интерес к этому гену и его функциям выходит далеко за пределы вирусологии. Благодаря стимуляции перехода инфицированной клетки в S-фазу клеточного цикла и подавлению репликативного старения [3], белок E1A обладает иммортализующей активностью. При экспрессии в первичных клетках грызунов E1A способствует онкогенной трансформации в сочетании с активированным *ras* [4] или другими комплементирующими онкогенами, например, другим геном раннего региона Ad5 *E1B* [5]. Однако в клетках человека E1A не является онкогенным [6, 7].

Многочисленные экспериментальные данные свидетельствуют об онкосупрессорных свойствах E1A в различных типах опухолевых клеток человека: карциноме, фибросаркоме и меланоме, что удивительно, принимая во внимание разнообразие генетических изменений в этих трех типах опухолей. Показано несколько механизмов опосредованного E1A подавления опухолевого роста, среди которых снижение метастатического потенциала, а также индукции апоптоза [8, 9].

Более поздние исследования показали, что экспрессия аденовирусного *E1A* повышает чувствительность раковых клеток к действию ряда цитотоксических агентов, используемых в противоопухолевой терапии, таких, как этопозид, цисплатин, таксаны и др. [10, 11]. При этом наблюдается селективная сенсибилизирующая активность аденовирусного E1A по отношению к раковым, но не нормальным клеткам [12, 13]. В связи с этим аденовирусный E1A рассматривается как перспективный сенсибилизирующий компонент комбинированной терапии опухолей.

Объектом нашего интереса является изучение возможности использования E1A в комбинированной химиотерапии – в сочетании с ингибиторами гистоновых деацетилаз (ИГД). Действие ИГД направлено на повышение уровня ацетилирования гистонов – эпигенетической модификации, обеспечивающей регуляцию таких фундаментальных клеточных процессов, как экспрессия генов, репликация ДНК, стабильность генома [14]. Показано, что сенсибилизирующий эффект E1A в отношении цитотоксического действия ИГД (SAHA, TSA) сильнее, чем других химиотерапевтических препаратов (5-фторурацил, цисплатин, этопозид, паклитаксел) [13]. Однако, как показано нами ранее, действие ИГД приводит к деградации E1A [15].

В качестве ИГД мы выбрали бутират натрия – ИГД широкого спектра, ингибирующий все деацетилазы гистонов, за исключением деацетилаз 6 и 10 второго класса и деацетилаз третьего класса [16]. Бутират натрия – метаболит, образующийся в организме млекопитающих [17], поэтому он обладает низкой цитотоксичностью в отношении нормальных клеток и избирательно убивает раковые клетки [18].

Белок Е1А, как и продукты других онкогенов, имеет довольно короткое время полужизни, равное примерно 40 мин [19]. Внутриклеточный уровень регуляторных белков с коротким временем полужизни, таких, как циклины, р53, бета-катенин, p27kip и Мус, контролируется убиквитин-протеасомной системой. В связи с этим такой путь деградации предположительно реализуется и для белка Е1А. Тем не менее точный механизм регуляции стабильности белка Е1А все еще не установлен. Показано, что деградация белка Е1А запускается не через убиквитинирование, а через фосфорилирование его С-концевых аминокислотных остатков [20]. Примечательно, что сам белок Е1А действует как протеасомный регулятор, способный как подавлять убиквитин-протеасомную систему путем прямого связывания его N-концевого участка с 26S субъединицей протеасомы [20], так и стимулировать убиквитинирование отдельных белков [21].

Ранее нами были отмечены различия в интенсивности ИГД-индуцированной деградации белка E1A в клетках, экспрессирующих Ras дикого типа или мутантный белок, что дало нам возможность выдвинуть предположение о роли белка Ras в регуляции стабильности E1A [15]. Малая GTP-аза Ras является ключевым регулятором клеточного роста [22]. В норме она активируется в ответ на внеклеточные стимулы и запускает программы пролиферации, однако при патологиях, приводящих к активации Ras-сигналинга, белок Ras постоянно находится в активированном состоянии, что приводит к независимому от сигналов внешней среды делению клеток и индукции канцерогенеза [23]. Конститутивная активность белка Ras, обусловленная мутациями в кодирующем его гене, выявлена в целом ряде опухолей, включая такие агрессивные и трудно поддающиеся лечению формы, как меланома, колоректальный рак и рак легкого [24], поэтому изучение опухолей с мутациями Ras имеет большое значение для разработки методов их терапии.

Наша работа посвящена изучению вклада активированного Ras в стабильность E1A при воздействии ИГД, что необходимо для рассмотрения возможности применения комплексной терапии с использованием ИГД и аденовирусного E1A, направленной на усиление антипролиферативного эффекта в опухолевых клетках с активированным Ras.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Клеточные линии

Линия E1A+Ras получена трансформацией эмбриональных фибробластов мыши комплементирующими онкогенами – раннего гена *E1A* аденовируса человека типа 5 (Ad5) и cHa-*ras*, несущим активирующие мутации в кодонах 12 и 61 [25]. Линия E1A+E1B получена трансформацией эмбриональных фибробластов крысы HindIII-районом Ad5, кодирующим белки E1A и E1B. Клетки эмбриональной почки человека, трансформированные аденовирусом типа 5 (HEK293), получены из ЦКП «Коллекция культур клеток позвоночных».

Клетки культивировали при 37°С и 5% СО₂ в среде DMEM с 10% FCS. Клетки обрабатывали 4 мМ бутиратом натрия (Calbiochem, США) и/или 1–2 мкМ лактацистином (Calbiochem).

ОТ-ПЦР

РНК выделяли из клеток с использованием реактива Trizol (Invitrogen, США). Обратную транскрипцию проводили с 2 мкг РНК и 1 мкг случайных гексапраймеров. Реакцию ПЦР проводили с использованием ПЦРциклера Eppendorf Mastercycler personal (AG 22331) в присутствии 100 нг праймеров к кДНК интересующих генов (*E1A*: 5'-CTTTCCACCCAGTGACGACG-3'/5'-TGTCGGGGCGTCTCAGGATAG-3'; *gapdh*: 5'-TCATCAGCAATGCCTCCTGCACC-3'/5'-ACAGTTTCCCGGAGGGGCCA-3') в течение 22–32 циклов, включающих денатурацию в течение 30 с (95°С), отжиг праймеров 30 с (61°С *E1A*, 58°С *gapdh*) и элонгацию – 1 мин (72°С).

Фракционирование клеточных экстрактов

Клетки суспендировали в 10 мМ HEPES-KOH (pH 7.9), после чего добавляли 0.4% NP-40 и центрифугировали при 5000 об/мин для получения цитоплазматических экстрактов. Осадки лизировали в 20 мМ HEPES-KOH (pH 7.9) и затем центрифугировали при 15000 об/мин для получения ядерных экстрактов.

Иммунопреципитация и иммуноблотинг

Клетки лизировали в буфере, содержащем 0.5% NP-40, 1% Triton X-100, ингибиторы протеаз и фосфатаз (для иммунопреципитации использовали буфер, содержащий 1% NP-40, 0.5% дезоксихолата натрия, 0.1% додецилсульфата натрия SDS). Белки разделяли в 10-12% полиакриламидном геле, переносили на мембрану PVDF (Millipore, CША) и анализировали с помощью специфических антител, выявляя методом усиления хемилюминесценции (ECL, Amersham Biosciences, Великобритания) и визуализировали на Syngene PXi6 Access. Использовали антитела к белкам E1A sc-25 G1713 1 : 1000 (Santa Cruz Biotechnology, Inc., CIIIA), pan-Ras OP40 1 : 1000 (Calbiochem), pERK1/2 #4377 1:800 (Cell Signalling, CIIIA), pAkt (Ser 473) #4060 1 : 1000 (Cell Signalling), p-p38 #9211 1 : 1000 (Cell Signalling), p-JNK #9251 1:500 (Cell Signalling), ацетилированного лизина #9441 1:500 (Cell Signalling), α-тубулина sc-32293 1 : 10000 (Santa Cruz Biotechnology, Inc.) и Gapdh 2118 1:1000 (Cell Signalling). Каждый белок был проанализирован не менее чем в трех повторностях. Для денситометрического анализа использовали программу ImageJ. Значения нормированы на контроль нагрузки (Gapdh) и приведены к относительным единицам измерения. На графиках приведены средние значения 3-5 экспериментов, планки погрешности - стандартная ошибка среднего (SEM).

Временная трансфекция

Для трансфекции клетки высевали на 12-луночную плату (среда DMEM с 10% FCS без антибиотика) в плотности 150 \times 10³ клеток на ячейку. Трансфекцию векторов pcDNA3 (Addgene) и pSV2ras, кодирующего cHa-ras (Addgene) проводили с помощью Lipofectamine-2000 (Invitrogen) по протоколу производителя.

РЕЗУЛЬТАТЫ

Динамика деградации белка E1A при действии ИГД бутирата натрия в клетках с различным статусом Ras

Для изучения влияния Ras-сигнального пути на стабильность E1A были использованы две экспрессирующие E1A линии трансформированных клеток, отличающиеся статусом активности белка Ras: линия E1A+Ras, экспрессирующая активированный cHa-*ras,* и линия E1A+E1B, экспрессирующая *ras* дикого типа.

Данные ОТ-ПЦР и иммуноблотинга показывают, что бутират натрия (NaBut) не влияет на транскрипцию гена *E1A* (*puc. 1A*), тогда как белковый продукт подвергается деградации в обеих клеточных линиях, но с различной динамикой и интенсивностью (*puc. 1Б*). В клетках E1A+Ras белок E1A деградирует быстро, тогда как в клетках линии E1A+E1B он продолжает выявляться даже спустя 72 ч действия NaBut. Схожая динамика умеренного снижения количества E1A наблюдается и в клетках HEK293, экспрессирующих ген *ras* дикого типа (*puc. 1B*).

Экспрессия активированного Ras увеличивает содержание белка E1A, однако приводит к его дестабилизации при действии бутирата натрия

Для подтверждения вовлеченности активированного Ras в регуляцию стабильности белка E1A экспрессионный вектор, кодирующий cHa-Ras с активирующими мутациями, был введен в клетки HEK293. Активированное состояние экзогенного Ras подтверждается данными иммуноблотинга о накоплении фосфорилированной формы киназы ERK,

Рис. 1. NaBut вызывает деградацию белка E1A, наиболее выраженную в клетках с активированным Ras. A – анализ транскрипции E1A методом OT-ПЦР. Изменение количества белкового продукта E1A методом иммуноблотинга в E1A-экспрессирующих клетках грызунов (Б) и человека (В). Ген gapdh и его белковый продукт использованы в качестве контроля нагрузки в OT-ПЦР и иммуноблотинге соответственно

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Рис. 2. Активированный Ras стабилизирует E1A, однако усиливает его деградацию при действии NaBut. Иммуноблотинг белков из клеток HEK293: трансфицированных векторами pcDNA3 (контрольный вектор) или pSV2-ras, с антителами против E1A, pERK и pan-Ras (A); и трансфицированных векторами pcDNA3 (контрольный вектор) или pSV2-ras, и обработанных 4 мM NaBut в течение 0–72 ч, с антителами к E1A и pan-Ras (*Б*). Gapdh использован в качестве контроля нагрузки. *В* – гистограммы усредненного количества E1A в трансфицированных клетках НЕК293 при действии NaBut, полученные денситометрическим анализом данных иммуноблотинга с нормированием на контроль нагрузки (Gapdh); количество E1A в необработанных клетках принято за единицу. Планки погрешности построены по значениям стандартной ошибки среднего (SEM). Для проверки значимости различий использовали тест Манна–Уитни, сравнивая попарно значения каждой временной точки для двух векторов (**p* < 0.05)

нижележащей МАР-киназы, после трансфекции клеток мутантным cHa-ras (*puc. 2A*). Экспрессия активированного Ras сопровождается накоплением аденовирусного белка E1A (*puc. 2A*). Таким образом, наши результаты показывают стабилизирующее влияние активированного Ras-сигналинга на белок E1A аденовируса.

При действии NaBut в клетках, трансфицированных вектором, кодирующим активированный Ras (pSV2-*ras*), деградация белка E1A происходит быстрее, чем в клетках, трансфицированных контрольным вектором pcDNA3 (*puc. 2Б,B*). Таким образом, сверхэкспрессия активированного Ras приводит к накоплению белка E1A, однако делает E1A более чувствительным к действию NaBut, усиливая его деградацию.

Механизмы, вовлеченные в Ras-зависимую стабилизацию белка E1A, выявляли с использованием ингибиторов нижележащих киназ в Ras-зависимых сигнальных каскадах. С помощью иммуноблотинга показано, что подавление только активности киназы ERK фармакологическими ингибиторами PD098059 или PD0325901 приводит к снижению количества E1A в клетках E1A+Ras (*puc. 3A*).

С целью изучения механизмов ИГД-индуцированной деградации Е1А сравнили изменения активности различных Ras-зависимых киназ при действии NaBut в клетках с различным статусом Ras. По данным иммуноблотинга с использованием фосфоспецифических антител NaBut сходным образом изменяет активность киназ p38 и JNK в клетках с нормальным и активированным Ras (puc. 3E). Выявлены принципиальные различия в изменении активности киназ ERK и PKB/Akt. Так, в клетках E1A+Ras с активированным Ras NaBut вызывает падение активности киназ ERK и PKB/Akt, тогда как в клетках НЕК293, экспрессирующих нормальный Ras, активность этих киназ увеличивается (рис. 3Б), что подразумевает вовлеченность этих киназ в регулирование как базального уровня белка Е1А, так и изменения его количества при воздействии NaBut.

Ингибирование протеасом не отменяет индуцированное бутиратом натрия снижение количества E1A

Для выявления роли убиквитин-протеасомной системы в ИГД-зависимом снижении количества E1A клетки E1A+Ras обрабатывали ингибитором протеасом лактацистином (LC). Обработка LC сопровождается дозозависимым увеличением количества белка E1A (*puc. 4A*).

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Рис. 3. Киназы Akt и ERK как факторы стабилизации E1A в Ras-экспрессирующих клетках. А – изменение количества белка E1A в E1A-экспрессирующих клетках с активированным Ras при обработке 4 мM NaBut и ингибиторами Rasзависимых киназ (50 мкМ PD098059 и PD0325901 – ингибиторы ERK, 20 мкМ LY и 10 мкМ WM – ингибиторы PI3K, 10 мкМ SP – ингибитор JNK) в течение 24 ч. Б – динамика фосфорилирования киназ при действии NaBut в клетках с активированным и нормальным Ras. Иммуноблотинг белков из клеток E1A+Ras и HEK293, необработанных или обработанных 4 мМ NaBut в течение 0–48 ч. Gapdh/α-тубулин использован в качестве контроля нагрузки

Рис. 4. Иммуноблотинг белков клеток E1A+Ras, обработанных ингибитором протеасом лактацистином (1 мкМ и 2 мкМ LC) (A) или совместно обработанных в течение 24–48 ч NaBut и/или 2 мкМ LC, с антителами против E1A (Б). Gapdh использован в качестве контроля нагрузки

Для проверки возможности предотвращения NaBut-индуцированной деградации E1A при подавлении активности протеасом клетки E1A+Ras обрабатывали NaBut или NaBut в сочетании с LC в течение 24–48 ч. Методом иммуноблотинга показано, что через 24 ч LC оказывает легкий стабилизирующий эффект как на контрольные, так и на обработанные NaBut клетки, однако при более продолжительном действии агентов количество белка E1A падает независимо от присутствия LC (*puc. 4Б*).

Таким образом, нами показано, что LC повышает базальный уровень белка E1A, но не предотвращает его деградацию при длительном действии NaBut.

Как известно, для деградации белка необходима его локализация в цитоплазме. Ранее было показано, что на релокализацию E1A может влиять его ацетилирование [26]. В связи с этим изучено влияние NaBut на степень ацетилированности E1A и его внутриклеточную локализацию. По данным иммуноблотинга, проведенного после иммунопреципитации с антителами к ацетилированному лизину, в первые 24 ч NaBut вызывает накопление ацетилированного E1A в клетках E1A+Ras, однако затем белок E1A перестает выявляться (*puc. 5A*). При этом данные иммуноблотинга фракционированных клеточных экстрактов свидетельствуют о том, что белок E1A, имеющий преимущественно ядерную локализацию, выходит из ядра при действии NaBut (*puc. 5E*). Это позволяет предположить, что NaBut способствует усилению ацетилирования белка E1A, что влечет за собой его релокализацию из ядра в цитоплазму, где он подвергается быстрой деградации.

ОБСУЖДЕНИЕ

Способность ИГД вызывать деградацию аденовирусного белка неоднократно показана экспериментально [13, 26–28], однако механизмы регуляции этого процесса, а также факторы стабилизации E1A до сих пор не установлены. Ранее мы показали, что такие ИГД, как бутират натрия, трихостатин A и вориностат (SAHA), вызывают деградацию аденовирусного белка E1A, при этом динамика ИГД-

Рис. 5. Ацетилирование и релокализация E1A при действии NaBut. A — иммунопреципитация с антителами против ацетилированного лизина (IP: Ac-Lys) с последующим иммуноблотингом с антителами к E1A. Иммуноглобулины G (IgG) использованы в качестве контроля нагрузки. Б — иммуноблотинг фракционированных клеточных экстрактов (CytoE — цитоплазматические экстракты, NE — ядерные экстракты) с антителами к E1A. Экстракты получены из клеток, необработанных или обработанных 4 мМ NaBut в течение 24 ч. Гистограмма отображает усредненное количество E1A, полученное денситометрическим анализом данных иммуноблотинга с нормированием на интенсивность сигнала загрузки дорожки (Ponceau S); количество E1A в необработанном NaBut цитоплазматическом экстракте принято за единицу. Планки погрешности построены по значениям стандартной ошибки среднего (SEM). Для проверки значимости различий использовали тест Манна–Уитни (ns p > 0.05, * p < 0.05)

индуцированного снижения уровня E1A коррелирует с активностью белка Ras в клетках [29].

В представленной работе нами изучен эффект участников Ras-сигналинга на стабильность аденовирусного E1A. Впервые мы показали, что сверхэкспрессия активированного Ras приводит к накоплению белка E1A. Согласно нашим данным, в Ras-зависимой стабилизации E1A определяющую роль играют киназы ERK1/2. Так, накопление аденовирусного белка E1A, индуцированное сверхэкспрессией активированного Ras, сопровождается активацией ERK1/2 (*puc. 2A*), а подавление активности пути MEK/ERK фармакологическими ингибиторами вызывает снижение количества E1A (*puc. 3Б*).

Индуцированная ИГД деградация E1A опосредована также активностью киназы ERK. Уменьшение количества белка E1A, вызванное действием NaBut, сопровождается инактивацией киназы ERK (*puc. 3A*). В подвергнутых действию NaBut клетках с активированным Ras выявлена также отрицательная динамика киназы Akt, однако ее инактивация не влияет на содержание E1A, как показано в опытах с использованием специфических ингибиторов Akt (*puc. 3A*).

Участие Ras-сигналинга в регуляции аденовирусного белка не случайно, так как при инфекции вирусы индуцируют передачу сигналов через MAP-киназный каскад [30] и, в частности, через киназу ERK [31]. Известно, что аденовирус усиливает активность ERK как на ранней, так и на поздней фазе инфекции [32].

Понимание взаимодействия вируса с компонентами Ras-сигнального пути клетки может быть определяющим для конструирования онколитических вирусов, специфически реплицирующихся в раковых клетках, а также для разработки подходов к противоопухолевой терапии с использованием аденовирусных белков.

Фосфорилирование по остаткам серина играет важную роль в регуляции активности белка E1A, в частности, фосфорилирование Ser185 и Ser188 активированной киназой ERK1/2 увеличивает экспрессию генов с промотора E4 [33]. Возможность участия фосфорилирования в стабилизации белка E1A пока недостаточно изучена. До сих пор только в двух работах показано, что как функции, так и содержание белка E1A находятся в сильной зависимости от киназного каскада MEK/ERK [32, 33], при этом предполагается, что изменение активности сигнального пути Ras/MEK/ERK влияет скорее не на скорость деградации белка E1A, а на эффективность трансляции.

Используя ингибитор протеасом лактацистин, мы установили, что базальный уровень белка E1A увеличивается при добавлении лактацистина, то есть в норме E1A утилизируется в протеасомах, что согласуется с результатами выявления роли протеасом в деградации изоформ E1A [34]. В отличие от базального уровня белка E1A, который повышался при действии лактацистина, его содержание снижалось в условиях ингибирования протеасом при длительном воздействии бутирата натрия. Это означает, что ИГД-зависимая деградация E1A происходит не по убиквитин-протеасомному пути, что указывает на индукцию альтернативного механизма дестабилизации E1A при действии ИГД в *ras*-трансформированных клетках.

Как ингибитор обширного класса деацетилаз гистонов, которые используют в качестве субстрата

и негистоновые белки, бутират натрия может влиять на состояние ацетилированности белка E1A. Белок E1A ацетилируется по Lys239 в C-концевом домене его клеточными кофакторами ацетилтрансферазами CBP, p300 и pCAF, что препятствует его ядерной локализации из-за нарушения связывания с импортином-α [26] и делает его доступным для систем деградации.

Известно, что постоянная активация Rasсигнального пути приводит к индукции транскрипционного фактора HSF1, контролирующего экспрессию белков теплового шока [35], что дает возможность предположить вовлеченность Hspзависимого механизма деградации [36] в ИГДзависимой дестабилизации белка E1A. Тем не менее, вклад шаперон-опосредованной аутофагии в утилизацию белка E1A требует экспериментального подтверждения.

выводы

1. Активированный Ras стабилизирует E1A через активацию нижележащей киназы ERK.

2. При действии бутирата натрия на клетки с активированным Ras происходит стремительное

СПИСОК ЛИТЕРАТУРЫ

- 1. Berk A.J. // Cancer Surv. 1986. V. 5. № 2. P. 367-387.
- Pelka P., Ablack J.N.G., Torchia J., Turnell A.S., Grand R.J.A., Mymryk J.S. // Nucl. Acids Res. 2009. V. 37. № 4. P. 1095–1106.
- 3. Deng Q., Li Y., Tedesco D., Liao R., Fuhrmann G., Sun P. // Cancer Res. 2005. V. 65. № 18. P. 8298–8307.
- 4. Reed J.C., Haldar S., Croce C.M., Cuddy M.P. // Mol. Cell. Biol. 1990. V. 10. № 8. P. 4370–4374.
- 5. Cuconati A., Degenhardt K., Sundararajan R., Anschel A., White E. // J. Virol. 2002. V. 76. № 9. P. 4547–4558.
- 6. Byrd P.J., Grand R.J., Gallimore P.H. // Oncogene. 1988. V. 2. № 5. P. 477–484.
- 7. Gallimore P.H., Grand R.J., Byrd P.J. // Anticancer Res. 1986. V. 6. № 3. P. 499–508.
- 8. Chang Y.-W., Hung M.-C., Su J.-L. // Arch. Immunol. Ther. Exp. (Warsz.). 2014. V. 62. № 3. P. 195–204.
- 9. Frisch S.M., Reich R., Collier I.E., Genrich L.T., Martin G., Goldberg G.I. // Oncogene. 1990. V. 5. № 1. P. 75-83.
- 10. Liao Y., Hung M.-C. // Cancer Res. 2004. V. 64. № 17. P. 5938–5942.
- 11. Radke J.R., Siddiqui Z.K., Figueroa I., Cook J.L. // Cell Death Discov. 2016. V. 2. P. 16076–16076.
- Sánchez-Prieto R., Quintanilla M., Cano A., Leonart M.L., Martin P., Anaya A., Ramón y Cajal S. // Oncogene. 1996.
 V. 13. № 5. P. 1083–1092.
- 13. Yamaguchi H., Chen C.-T., Chou C.-K., Pal A., Bornmann W., Hortobagyi G.N., Hung M.-C. // Oncogene. 2010. V. 29. № 41. P. 5619–5629.
- Seto E., Yoshida M. // Cold Spring Harb. Perspect. Biol. 2014. V. 6. № 4. P. a018713.
- 15. Morshneva A., Gnedina O., Marusova T., Igotti M. // Cells. 2019. V. 9. № 1. P. 97.
- 16. Davie J.R. // J. Nutr. 2003. V. 133. № 7 Suppl. P. 2485S–2493S.
- 17. Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. // Adv. Nutr. Bethesda Md. 2018. V. 9. № 1. P. 21–29.

падение уровня белка E1A, индуцированное ИГДзависимой инактивацией киназы ERK.

3. В норме E1A утилизируется путем протеасомной деградации, однако при длительном действии бутирата натрия деградация E1A наблюдается даже в условиях ингибирования протеасом, а значит, ИГД-зависимая деградация E1A происходит не по убиквитин-протеасомному пути.

4. Наши результаты указывают на то, что ИГДиндуцированная деградация Е1А может приводить к снижению его проапоптотического потенциала в клетках с активированным Ras, поэтому возможность применения Е1А в сочетании с ИГД в комбинированной терапии опухолей с мутантным активированным Ras ограничена. ●

Работа выполнена при финансовой поддержке гранта Российского научного фонда (РНФ) № 22-25-20229 и частично Фонда директора Института цитологии РАН. Клеточные линии получены из ЦКП «Коллекция культур клеток позвоночных», поддержанного грантом Минобрнауки Российской Федерации (соглашение № 075-15-2021-683).

- Wang W., Fang D., Zhang H., Xue J., Wangchuk D., Du J., Jiang L. // OncoTargets Ther. 2020. V. 13. P. 4691–4704.
- Slavicek J.M., Jones N.C., Richter J.D. // EMBO J. 1988.
 V. 7. № 10. P. 3171–3180.
- 20. Turnell A.S., Grand R.J.A., Gorbea C., Zhang X., Wang W., Mymryk J.S., Gallimore P.H. // EMBO J. 2000. V. 19. № 17. P. 4759–4773.
- 21. Guan H., Ricciardi R.P. // J. Virol. 2012. V. 86. № 10. P. 5594–5602.
- 22. Song S., Cong W., Zhou S., Shi Y., Dai W., Zhang H., Wang X.,
- He B., Zhang Q. // Asian J. Pharm. Sci. 2019. V. 14. № 1. P. 30–39.
- 23. Downward J. // Nat. Rev. Cancer. 2003. V. 3. № 1. P. 11–22.
- 24. Fernández-Medarde A., Santos E. // Genes Cancer. 2011. V. 2. № 3. P. 344–358.
- 25. Поспелова Т.В., Кислякова Т.В., Медведев А.В., Светликова С.Б., Поспелов В.А. // Цитология. 1990. Т. 32. № 2. С. 148–155.
- 26. Madison D.L., Yaciuk P., Kwok R.P.S., Lundblad J.R. // J. Biol. Chem. 2002. V. 277. № 41. P. 38755–38763.
- 27. Иготти М.В., Светликова С.Б., Поспелов В.А. // Acta Naturae. 2018. Т. 10. № 4. С. 70–78.
- 28. Saha B., Parks R.J. // J. Virol. 2019. V. 93. № 12. P. e00088-19.
- 29. Morshneva A., Gnedina O., Svetlikova S., Pospelov V., Igotti M. // AIMS Genet. 2018. V. 5. № 1. P. 41–52.
- 30. Popik W., Pitha P.M. // Virology. 1998. V. 252. № 1. P. 210-217.
- 31. Bruder J.T., Kovesdi I. // J. Virol. 1997. V. 71. № 1. P. 398-404.
- 32. Schümann M., Dobbelstein M. // Cancer Res. 2006. V. 66. № 3. P. 1282–1288.
- 33. Whalen S.G., Marcellus R.C., Whalen A., Ahn N.G., Ricciardi R.P., Branton P.E. // J. Virol. 1997. V. 71. № 5. P. 3545–3553.
- 34. Radko S., Jung R., Olanubi O., Pelka P. // PLoS One. 2015. V. 10. № 10. P. e0140124.
- 35. Dai C. // Philos. Trans. R. Soc. B Biol. Sci. 2018. V. 373. № 1738. P. 20160525.
- 36. Cuervo A.M. // Trends Endocrinol. Metab. 2010. V. 21. № 3. P. 142–150.