УДК 615; 616-05

Механизмы защиты сердца синтетическим агонистом рецепторов галанина при повреждении хроническим введением доксорубицина

И. М. Студнева 1 , О. М. Веселова 1 , А. А. Бахтин 2 , Г. Г. Коновалова 1 , В. З. Ланкин 1 , О. И. Писаренко $^{1^*}$

¹Национальный медицинский исследовательский центр кардиологии Минздрава России, Москва, 121552 Россия

²Научно-клинический центр оториноларингологии ФМБА России, Москва, 123182 Россия

*E-mail: olpi@live.ru

Поступила в редакцию 27.07.2019 Принята к печати 29.11.2019 DOI: 10.32607/actanaturae.10945

РЕФЕРАТ Применение противоопухолевого препарата доксорубицина (Докс) ограничено из-за его кардиотоксического действия. Изучено влияние нового синтетического агониста рецепторов галанина GalR1-3 [βAla14, His15]-галанин (2-15) (G) на метаболизм, активность антиоксидантных ферментов, окислительный стресс и функцию сердца у крыс с кардиомиопатией (КМП), вызванной хроническим введением Докс. Совместное введение пептида G и Докс статистически значимо увеличивало фракцию укорочения (ΦY) и фракцию выброса (ΦB) в среднем на $30 \pm 4\%$ по сравнению с этими показателями в группе Докс. Уменьшение дисфункции сердца под действием G сочеталось со снижением в 2.5 раза активности креатинкиназы-МВ (КК-МВ) в плазме крови. Защитное действие пептида G обусловлено снижением перекисного окисления липидов (ПОЛ) вследствие увеличения активности Си, Zn-супероксиддисмутазы (Си, Zn-SOD) и глутатионпероксидазы (GSH-Px) в поврежденном сердце. Введение пептида G статистически значимо увеличивало пул адениннуклеотидов (Σ AH), ATP, фосфокреатина (Φ Kp) и общего креатина (Σ Kp) в поврежденном миокарде, а также снижало накопление лактата по сравнению с этим показателем в группе Докс. Улучшение энергетического обеспечения кардиомиоцитов под действием пептида G предотвращало накопление цитотоксичного аммиака и нарушения обмена ключевых аминокислот сердца – глутаминовой (Глу) и аспарагиновой (Асп), а также аланина (Ала). Пептид G снижал морфологические изменения в сердце крыс, получавших Докс. Результаты указывают на перспективность использования пептида G для эффективной коррекции функциональных, морфологических и метаболических повреждений сердца при химиотерапии антрациклинами.

КЛЮЧЕВЫЕ СЛОВА антиоксидантные ферменты, галанин, доксорубицин, крыса, метаболизм миокарда. СПИСОК СОКРАЩЕНИЙ 2ТБК — 2-тиобарбитуровая кислота; АЭЗ — аденилатный энергетический заряд; АФК — активные формы кислорода; Докс — доксорубицин; И/Р — ишемия/реперфузия; КК-МВ — креатинкиназа-МВ; КМП — кардиомиопатия; Кр — креатин; ЛЖ — левый желудочек; ПОЛ — перекисное окисление липидов; ТБКАП — тиобарбитуратные кислотно-активные продукты; ФВ — фракция выброса; ФКр — фосфокреатин; ФУ — фракция укорочения; ЭхоКГ — эхокардиография; САТ — каталаза; Си, Zn-SOD — Си, Zn-супероксиддисмутаза; GSH-Px — глутатионпероксидаза; PPARs — рецепторы, активируемые пролифераторами пероксисом; ΣАН — пул адениннуклеотидов; ΣКр — общий креатин.

ВВЕДЕНИЕ

Снижение выработки энергии кардиомиоцитами, вызванное нарушением функций митохондрий или токсическим воздействием лекарственных препаратов, может приводить к хроническому повреждению ми-

окарда. Доксорубицин (Докс) — противоопухолевое средство антрациклинового ряда — способен вызывать развитие кардиомиопатии (КМП) и сердечной недостаточности, что ограничивает его использование в онкологической практике [1]. Кардиотоксичность,

инициируемая Докс, является многофакторным процессом, который приводит к гибели кардиомиоцитов и эндотелиальных клеток [2]. Ключевые причины кардиотоксичности Докс - нарушения окислительного фосфорилирования и генерация активных форм кислорода (АФК), вызывающих перекисное окисление липидов (ПОЛ) [3]. Оптимизация режимов введения Докс и применение его липосомальных форм не устраняют высокую кардиотоксичность этого препарата [4]. В связи с этим актуальной остается разработка лекарственных средств, предотвращающих или ослабляющих повреждения сердца, вызванные Докс. Ранее нами было показано, что экзогенные N-концевые фрагменты галанина (2-11) и (2-15), связываясь с рецептором GalR2, оказывают защитное действие на кардиомиоциты при ишемическом и реперфузионном (И/Р) повреждении. Оно обусловлено снижением образования супероксидных радикалов в митохондриях и запуском сигнальных каскадов, приводящих к уменьшению гибели клеток от апоптоза и некроза [5, 6]. Впоследствии мы синтезировали ряд пептидных аналогов фрагментов галанина (2-11) и (2-15) с сохранением фармакофорных аминокислотных остатков, ответственных за связывание с рецептором GalR2. Тестирование этих пептидов на моделях И/Р повреждения сердца выявило их кардиотропные свойства [7]. Наиболее эффективной оказалась химерная молекула, представляющая последовательность галанина (2-13), дополненную природным дипептидом карнозином, H-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu-Leu-Gly-Pro-βAla-His-OH (G) [8]. Пептид G улучшал функцию сердца крыс, интегрированность мембран и энергетическое состояние кардиомиоцитов при хроническом повреждении миокарда Докс [9], что указывало на его влияние на метаболизм миокарда. Однако механизмы действия этого соединения остаются малоизученными. В связи с этим цель настоящей работы заключалась в исследовании действия пептида G на менее изученные мишени Докс - активность антиоксидантных ферментов и показатели азотистого и углеводного обмена в сердце крыс при кардиомиопатии, моделированной введением Докс. Кардиотоксическое действие Докс характеризовали изменениями активности креатинкиназы-МВ (КК-МВ) в крови, уровнем окислительного стресса в сердце и плазме крови животных и морфологическим состоянием миокарда.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дизайн эксперимента

Опыты выполнены на крысах-самцах линии Вистар весом 280-300 г, полученных из филиала «Столбовая» ФГБУН НЦБМТ ФМБА России.

Для моделирования кардиомиопатии использовали хроническое введение Докс, описанное в работе [9]. Животные были разделены на четыре группы. Контрольная группа (К) – внутрибрюшинное введение физиологического раствора (1 мл/кг веса еженедельно в течение 8 недель); Докс (Д) - внутрибрюшинное введение Докс (1 мг/кг веса еженедельно в течение 8 недель); Докс + пептид G (Д + G) – внутрибрющинное введение Докс (1 мг/кг веса еженедельно в течение 8 недель) и подкожное введение пептида G (50 нмоль/кг веса ежедневно в течение 8 недель); пептид G (G) – подкожное введение G (50 нмоль/кг веса ежедневно в течение 8 недель). Перед проведением исследования (исходное состояние) и после 8-недельного эксперимента животных взвешивали, в плазме крови определяли активность креатинкиназы-МВ (КК-МВ) и содержание тиобарбитуратных кислотно-активных продуктов (ТБКАП). Показатели функции сердца оценивали методом эхокардиографии (ЭхоКГ). По окончании 8-недельного эксперимента у наркотизированных животных каждой группы (уретан, 120 мг/кг) извлекали сердца для определения содержания метаболитов и ТБКАП, активности антиоксидантных ферментов и морфологического исследования.

Модифицированный N-концевой фрагмент галанина G

Пептид G (H-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Туг-Leu-Leu-Gly-Pro-βAla-His-OH, молекулярная масса 1499.7) получен путем ступенчатого твердофазного синтеза с использованием Fmoc-методологии [7]. Пептид G очищали методом высокоэффективной жидкостной хроматографии на обращенной фазе, его структура охарактеризована с помощью ¹H-ЯМР-спектроскопии и MALDI-масс-спектрометрии [8].

Трансторакальная ЭхоКГ

Применена высокочастотная ультразвуковая система Vevo 1100 Visual Sonic (FUJILM, Нидерланды) с линейным датчиком 13-24 МГц и максимальной глубиной лоцирования 30 мм. Исследование проводили у крыс под наркозом (Золетил 100, Virbac Sante Animale, Франция, 5 мг/кг) с использованием парастернального доступа по короткой и длинной осям. В В-режиме измеряли диастолические и систолические размеры левого желудочка (ЛЖ), на их основе рассчитывали параметры ЛЖ в диастоле и систоле, а также фракции выброса (ФВ) и укорочения (ФУ).

Определение содержания метаболитов в ткани сердца

Часть ткани сердец, замороженных в жидком азоте, гомогенизировали в холодной 6% $HClO_4$

(10 мл/г ткани) в гомогенизаторе Ultra-Turrax T-25 (IKA-Labortechnik, Германия). Белки осаждали центрифугированием (центрифуга Sorvall RT1, Thermo Fisher Scientific, США) при 2800g в течение 10 мин при 4°C. Супернатанты нейтрализовали $5~\mathrm{M}~\mathrm{K_{2}CO_{_{3}}}$ до pH 7.4. Осадок $\mathrm{KClO_{_{4}}}$ отделяли центрифугированием в тех же условиях. Безбелковые экстракты хранили при -20°C до определения метаболитов. Сухой вес гомогенизированной ткани определяли после высушивания образцов в течение суток при 110°C. Содержание адениннуклеотидов (ATP, ADP и AMP), фосфокреатина (ФКр), креатина (Кр), глюкозы, лактата, глутаминовой и аспарагиновой кислот, аланина и аммиака в экстрактах определяли энзиматическими методами [10] с помощью спектрофотометра Shimadzu UV-1800 (пинопК)

Определение активности антиоксидантных ферментов и ТБКАП в сердце

Оставшуюся часть замороженной ткани сердец крыс гомогенизировали в 50 мМ Na-фосфатном буфере рН 7.4 (10 мл/г ткани) при помощи гомогенизатора Ultra-Turrax T-25 (IKA-Labortechnik, Германия) и центрифугировали на центрифуге Sigma 3-16 KL (США) при 1000g и 4°С в течение 10 мин. Содержания ТБКАП определяли в гомогенатах, активность Cu,Zn-супероксиддисмутазы (Cu,Zn-SOD), каталазы (CAT) и глутатионпероксидазы (GSH-Px) - в супернатантах. Белок в супернатанте определяли по методу Лоури. Все измерения проводили на спектрофотометре Shimadzu 2600 (Япония). Содержание ТБКАП определяли в реакции с 2-тиобарбитуровой кислотой (2TБК) при $\lambda = 532$ нм [11]. Активность Cu,Zn-SOD определяли по подавлению скорости восстановления нитросинего тетразолия при генерации супероксидного анион-радикала в процессе окисления ксантина ксантиноксидазой при $\lambda = 560$ нм [12]. Активность САТ измеряли по скорости расходования пероксида водорода (Н₂О₂) при 200С в течение 1 мин, принимая коэффициент молярной экстинкции Н₂О₃ равным 43.6 М-1см-1 [13]. Активность GSH-Px определяли по скорости окисления NADPH в сопряженной глутатионредуктазной системе при $\lambda = 340$ нм. В качестве субстрата использовали Н,О,. Реакцию проводили в присутствии 3 мМ азида натрия для ингибирования CAT [14].

Оценка повреждения клеточных мембран и концентрации ТБКАП в плазме

Активность КК-МВ определяли на спектрофотометре Shimadzu UV-1800 (Япония) при $\lambda=340$ нм, используя наборы фирмы BioSystems. Концентрацию ТБКАП в плазме определяли по образованию окра-

шенного комплекса в реакции с 2ТБК, который экстрагировали из реакционной смеси бутанолом [15].

Морфологическое исследование

Сердца крыс каждой группы фиксировали в 10% растворе забуференного формалина (рН 7.4) в течение 24 ч. Из верхней части ЛЖ вырезали слайс толщиной 2 мм, перпендикулярный длиннику органа, содержащий свободную стенку ЛЖ. Затем образцы обрабатывали в спиртах возрастающей концентрации (70–100%), ксилоле и заливали в парафин. Далее формировали парафиновые блоки с последующим изготовлением срезов толщиной 5-7 мкм. После высушивания срезов в горизонтальном положении проводили обзорную окраску гематоксилином и эозином (ГЭ), а также окрашивание гематоксилин-основной фуксин-пикриновой кислотой (ГОФП) для выявления фуксинофильных кардиомиоцитов [16]. Использовали оптический микроскоп Leica DM2500 (Германия).

Статистическая обработка результатов

Использовали пакет программ SigmaPlot 11.2 (SysStat, CIIIA). Результаты представляли как среднее значение \pm стандартная ошибка среднего (М \pm m). Различия между группами подтверждены статистически с применением дисперсионного анализа (ANOVA). При сравнении нескольких групп с контролем использовали t-критерий Стьюдента с поправкой Бонферрони. Статистически значимыми отличия считали при P < 0.05.

РЕЗУЛЬТАТЫ

Влияние пептида G на кардиотоксичность и окислительный стресс

ЭхоКГ-исследование животных контрольной группы не выявило изменений в частоте сокращений сердца и показателях сократимости ЛЖ по сравнению с исходным состоянием спустя 8 недель наблюдения. При введении Докс у животных развивалась КМП – конечно-систолический размер (КСР) ЛЖ был увеличен, а фракция укорочения (ФУ) и фракция выброса (ФВ) были снижены до 67 и 69% соответственно (рис. 1А-В). Совместное введение Докс и пептида G статистически значимо уменьшало КСР ЛЖ и увеличивало ФУ и ФВ по сравнению с этими показателями в группе Д. Развитие КМП под действием Докс сопровождалось активацией ПОЛ и повреждением мембран кардиомиоцитов. После 8 недель исследования содержание ТБКАП в сердце и плазме крови крыс, получавших Докс, было выше, чем у животных контрольной группы ($puc. 1\Gamma, \Lambda$). Совместное введение пептида G и Докс значимо снижало этот показатель.

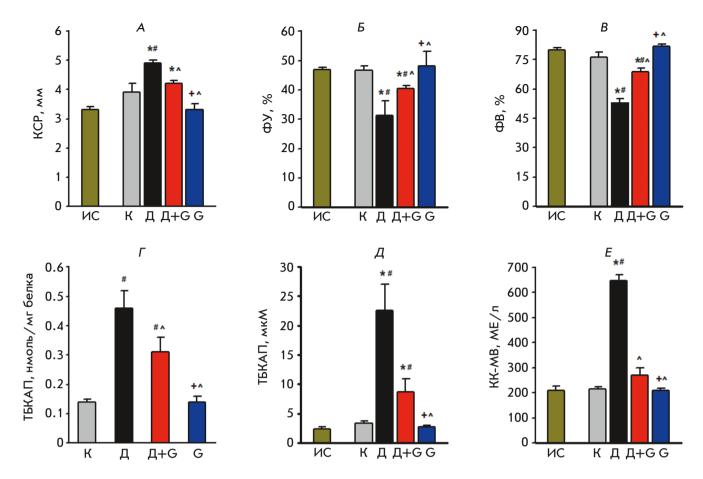


Рис. 1. Показатели ЭхоКГ, окислительного стресса и повреждения мембран кардиомиоцитов в исследуемых группах. A — конечно-систолический размер (КСР) ЛЖ. B — фракция укорочения (ФУ = (КДР — КСР)/КДР×100%), где КСР и КДР — конечно-систолический и конечно-диастолический размеры ЛЖ. B — фракция выброса (ФВ = (КДО — КСО/КДО×100%)), где КДО и КСО — конечно-диастолический и конечно-систолический объемы ЛЖ. Γ — содержание тиобарбитуратных кислотно-активных продуктов (ТБКАП) в сердце. \mathcal{L} — концентрация ТБКАП в плазме крови. E — активность креатинкиназы-МВ (КК-МВ) в плазме крови. ИС — исходное состояние, К — контроль, \mathcal{L} — доксорубицин, \mathcal{L} + \mathcal{L} — доксорубицин + пептид \mathcal{L} — пептид \mathcal{L} — данные представлены как \mathcal{L} — \mathcal{L}

В конце исследования активность КК-МВ в группе Д была почти в 3 раза выше, чем в контроле (рис. 1Е). Введение пептида G одновременно с Докс снижало этот показатель практически до значения в контроле. Под действием одного пептида G изменений в ЭхоКГ-показателях, содержании ТБКАП в сердце и плазме и активности КК-МВ в плазме крови не происходило. Таким образом, пептид G снижал повреждающее действие Докс, уменьшая окислительный стресс и повреждения мембран кардиомиоцитов.

Влияние пептида G на морфологические изменения в миокарде

В контроле при окрашивании ГЭ отмечали небольшое полнокровие и умеренный стаз эритроцитов в сосудах капиллярного типа (puc. 2A). При окра-

ске по ГОФП очаги фуксинофилии не обнаружены, что косвенно свидетельствует об отсутствии контрактуры и ишемии миокарда [17]. В группе Д в большинстве случаев наблюдался выраженный стаз эритроцитов в капиллярах, а также полнокровие. При окрашивании по ГОФП в половине случаев наблюдали множественные очаги фуксинофилии кардиомиоцитов, носящие как диффузный, так и очаговый характер (puc. 2Б). В группе Д + G лишь в одном случае на фоне выраженного стаза эритроцитов и полнокровия выявлены единичные кардиомиоциты с фуксинофилией (рис. 2В). В большинстве сердец животных группы G очаги фуксинофилии не обнаружены. При введении одного пептида G наблюдали незначительный стаз эритроцитов, как и в контрольной группе. При окрашивании ГОФП единичные фукси-

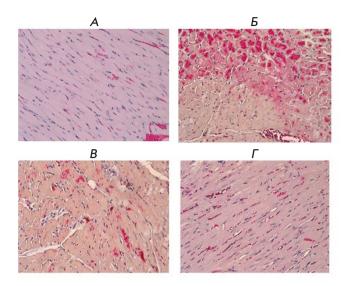


Рис. 2. Влияние пептида G на морфологические изменения сердца крыс, получавших Докс. A – контроль, Γ Э, \times 200. Незначительное полнокровие и стаз эритроцитов. B – группа Докс, Γ ОФП, \times 200. Обширные очаги фуксинофилии кардиомиоцитов. B – группа Д + G, Γ ОФП, \times 200. Группы единичных кардиомиоцитов, проявляющих цитоплазматическую фуксинофилию. Γ – группа G, Γ ОФП, \times 200. Незначительный стаз эритроцитов, отсутствие фуксинофильных кардиомиоцитов

нофильные кардиомиоциты обнаружены лишь в одном случае. У основной части животных группы G очаги фуксинофилии кардиомиоцитов не выявлены ($puc.\ 2\Gamma$). Таким образом, введение пептида G снижало морфологические изменения в сердце крыс, вызванные воздействием Докс.

Таблица 1. Влияние Докс и пептида G на активность антиоксидантных ферментов в сердце крыс после 8-недельного исследования

Группа крыс	Cu,Zn-SOD	CAT	GSH-Px
Контроль	220.75 ± 17.92	16.73 ± 0.43	0.21 ± 0.01
Докс	165.50 ± 22.77	21.50 ± 0.50 *	$0.16 \pm 0.01^*$
Докс + G	259.64 ± 13.78 #	$23.67 \pm 1.49^*$	0.20 ± 0.01 #
G	227.55 ± 19.31	19.13 ± 1.08	0.19 ± 0.01

Примечание. Данные представлены как $M \pm m$ (n = 6) и выражены в ед. активности/мг белка. P < 0.05 от: * контроля; # Докс + G.

Влияние пептида G на активность антиоксидантных ферментов сердца

Отмечено, что действие Докс приводит к снижению активности GSH-Px, появлению тенденции к уменьшению активности Cu,Zn-SOD и увеличению активности CAT по сравнению с контролем (maбn.~1). Совместное введение Докс и G статистически значимо увеличивало активность Cu,Zn-SOD и GSH-Px и незначимо CAT (P=0.082) по сравнению с этими показателями в группе Д. Введение одного пептида G не влияло на активность ферментов.

Влияние пептида G на показатели энергетического обмена сердца

После 8 недель исследования общий пул адениннуклеотидов (ΣАН) в сердце и аденилатный энергетический заряд (АЭЗ) кардиомиоцитов у крыс группы Д были статистически значимо ниже, чем в контроле, за счет уменьшения содержания АТР (табл. 2).

Tаблица 2. Влияние Докс и пептида G на энергетическое состояние миокарда крыс после 8-недельного исследования

Метаболит	Контроль	Докс	Докс + G	G
ATP	18.84 ± 1.17	$11.83 \pm 1.33^*$	16.31 ± 1.32 #	18.91 ± 1.97#
ADP	5.47 ± 0.11	5.60 ± 0.35	$7.28 \pm 0.47^{*#}$	$6.30 \pm 0.33^*$
AMP	0.92 ± 0.06	1.14 ± 0.16	$1.58 \pm 0.15^*$	1.50 ± 0.10 *
ΣΑΗ	25.24 ± 1.22	18.56 ± 1.66 *	25.18 ± 1.50 #	25.71 ± 1.13 [#]
A93	0.86 ± 0.01	$0.78 \pm 0.02*$	$0.79 \pm 0.01^*$	0.85 ± 0.02
ФКр	22.57 ± 1.52	$12.08 \pm 1.25^*$	$17.74 \pm 1.14^{*#}$	20.66 ± 2.04 [#]
Кр	34.94 ± 2.64	38.34 ± 3.80	38.24 ± 3.89	37.43 ± 2.67
ΣΚρ	57.51 ± 1.67	50.42 ± 2.26 *	55.98 ± 2.12	58.09 ± 2.81 #

Примечание. Данные представлены как $M \pm m \, (n=6)$ и выражены для метаболитов в мкмоль/г сух. веса. Σ AH = ATP+ADP+AMP; AЭ3 (аденилатный энергетический заряд) = (ATP+0.5 ADP)/ Σ AH; Σ Kp = ФКр+Kp. P < 0.05 от: * контроля; # Докс.

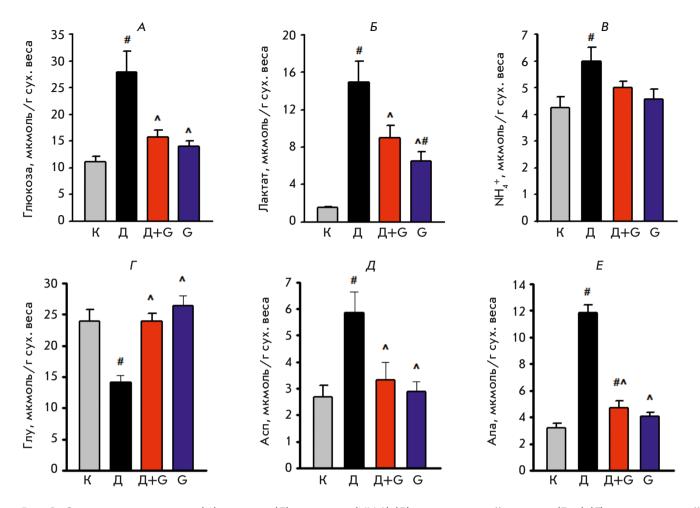


Рис. 3. Содержание глюкозы (A), лактата (Б), аммиака ($\mathrm{NH_4^+}$) (B), глутаминовой кислоты (Глу) (Г), аспарагиновой кислоты (Асп) (Д) и аланина (Ала) (Е) в миокарде крыс после 8 недель исследования. К — контроль, Д — доксорубицин, Д + G — доксорубицин + пептид G, G — пептид G. Данные представлены как М \pm m (n = 6). P < 0.05 от: # K, $^{\wedge}$ Д

Содержание ФКр в сердцах животных группы Д было в 2 раза ниже. Это стало причиной уменьшения содержания общего креатина (Σ Кр), поскольку содержание Кр под влиянием Докс не изменялось. Введение животным пептида G совместно с Докс повышало содержание АТР и ADP, результатом чего было 1.5-кратное увеличение Σ AH до значения в контроле. У животных группы Д + G содержание ФКр и Σ Кр в миокарде было более высоким, чем в группе Д, и не отличалось значимо от значений в контроле. Поскольку потери внутриклеточного Σ Кр связывают с повреждениями сарколеммы [18], более высокое содержание Σ Кр в группе Д + G указывало на менее существенное повреждение клеточных мембран под действием G.

Влияние пептида G на содержание метаболитов углеводного и азотистого обмена в сердце

Снижение β-окисления жирных кислот, увеличение захвата глюкозы миокардом и компенсаторное уси-

ление анаэробного гликолиза после 8-недельного введения Докс [19] значительно повышали содержание глюкозы и лактата в сердце крыс группы Д по сравнению с контролем (рис. 3A, Б). Введение пептида G совместно с Докс снижало содержание глюкозы до значения, близкого к контролю, и одновременно уменьшало содержание лактата по сравнению с этим показателем в группе Д. При введении только пептида G уровень глюкозы в сердце не отличался статистически значимо от уровня в контрольной группе, а содержание лактата было выше, чем в контроле.

Мы изучили действие Докс и пептида G на содержание в сердце ключевых аминокислот — глутаминовой (Глу), аспарагиновой (Асп), аланина (Ала) и аммиака. Нарушение аэробного энергетического обеспечения сердца под действием Докс увеличивало скорость катаболизма Глу и образования Ала. После 8 недель содержание Глу в группе Д было статистически значимо снижено, а Ала — увеличено вслед-

ствие трансаминирования гликолитического пирувата по сравнению с этими показателями в контроле. В результате сопряженного трансаминирования Глу и оксалоацетата содержание Асп в группе Д увеличивалось вдвое по сравнению с контролем (рис. 3Γ , \mathcal{I} , \mathcal{E}). Под действием пептида G в группе Д + G содержание Глу восстанавливалось, а Ала снижалось. Одновременно уровень Асп в группе Д + G снижался до значений в контроле.

Введение Докс крысам статистически значимо увеличивало содержание аммиака в миокарде по сравнению с контролем (рис. 3В). Под действием пептида G этот показатель снижался до значения в контрольной группе. Таким образом, улучшение энергетического состояния сердца, поврежденного Докс, обусловленное действием пептида G, предотвращало изменения в обмене Глу, Асп и Ала и снижало накопление аммиака в миокарде. Содержание этих азотистых соединений у животных, которым вводили только пептид G, было таким же, как в контрольной группе.

ОБСУЖДЕНИЕ

В нашей работе на модели КМП у крыс, вызванной хроническим введением Докс, показано защитное действие пептида G. Снижение нарушений функции сердца, уменьшение ремоделирования ЛЖ и морфологических изменений при совместном введении Докс и пептида G сопровождались значительным улучшением энергетического обеспечения кардиомиоцитов. На это указывает более высокое содержание АТР, ΣΑΗ и ФКр в сердце, которое сочеталось со снижением накопления глюкозы и лактата. Существенно, что при доксорубициновой КМП увеличивалась скорость катаболизма миокардиальной Глу, что сопровождалось образованием Ала и Асп и накоплением цитотоксичного аммиака. Как правило, такие изменения в обмене этих аминокислот обнаруживаются в тех случаях, когда окислительное фосфорилирование не может обеспечить необходимого образования АТР, происходит активация гликолиза и использование резервных макроэргических фосфатов. Реакции сопряженного трансаминирования Глу и Асп и образования Ала сопряжены с усилением субстратного фосфорилирования в митохондриях на уровне сукцината, компенсирующего ингибирование окислительного фосфорилирования. При этом потеря внутриклеточного пула Глу, участвующей в поддержании уровня АТР, и продукция Ала тесно связаны с энергетическим состоянием сердца [20, 21]. Увеличение аэробного обмена под действием пептида G в сердце, поврежденном Докс, восстанавливало нормальное содержание Глу, Асп и Ала и снижало образование аммиака. Такие сдвиги во внутриклеточном обмене миокарда отражают снижение отношения NADH/NAD⁺ в цитозоле, нормализацию функции малат-аспартатного челнока и цикла трикарбоновых кислот [22, 23]. Они хорошо согласуются с более высоким дыхательным контролем в митохондриях сердца на NAD⁺-зависимых субстратах (Глу и малате), обнаруженном нами ранее после совместного введения Докс и пептида G крысам [9].

Контроль содержания аммиака в сердечной мышце, характеризующейся интенсивным аэробным обменом, имеет особое значение. Это связано с его способностью 1) ингибировать реакции декарбоксилирования α-кетокислот в цикле Кребса и синтез белка; 2) сдвигать направление глутаматдегидрогеназной реакции в сторону образования Глу и тем самым блокировать катаболизм аминокислот; 3) нарушать активный перенос одновалентных катионов и изменять внутриклеточный рН [24, 25]. Снижение внутриклеточного уровня аммиака, обладающего токсическим действием на окислительный обмен, обусловлено улучшением метаболизма миокарда под действием пептида G. Этот эффект, скорее всего, вызван активацией связывания аммиака в АТР-зависимых реакциях образования глутамина, аспарагина, а также снижением деградации адениннуклеотидов [26, 27]. Таким образом, пептид С корректировал ключевые звенья метаболизма миокарда при КМП - энергетический, углеводный и азотистый обмены.

В настоящее время клонированы и охарактеризованы три подтипа рецепторов галанина - GalR1, GalR2 и GalR3, которые существуют и в сердце. За связывание с рецепторами отвечает N-концевой фрагмент пептида, первые 15 аминокислотных остатков которого консервативно сохраняются у большинства видов животных и человека [28]. Влияние пептида G на метаболическое состояние поврежденного сердца обусловлено, вероятно, его связыванием преимущественно с GalR2, сопряженного с различными типами G-белков, которое активирует механизмы клеточной защиты (рис. 4). Активация всех подтипов рецепторов галанина через белки Gi/о ингибирует активность аденилатциклазы, что приводит к ингибированию транскрипционного фактора CREB белка, связывающего цикло-АМР-зависимый элемент. Это повышает экспрессию транспортера глюкозы GLUT4 и его перемещение в сарколемму, стимулируя захват и окисление глюкозы кардиомиоцитами. Запуск этого механизма имеет решающее значение в условиях снижения продукции АТР [29]. Сопряжение рецептора GalR2 с белком Gq/11 активирует фосфолипазу С и через гидролиз фосфатидилинозитолдифосфата регулирует гомеостаз Са²⁺, что улучшает инотропные свойства сердца [30].

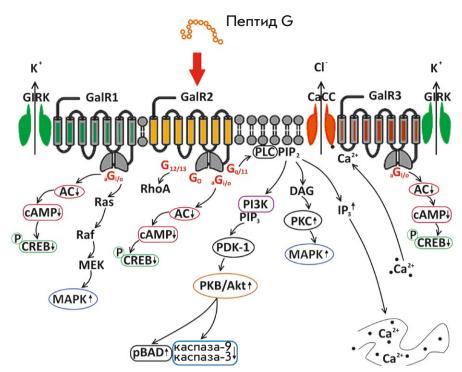


Рис. 4. Пути внутриклеточной сигнализации, активируемые пептидом G – фармакологическим агонистом рецепторов галанина (Runesson [31]). AC – аденилатциклаза; (p)BAD – (фосфорилированный) BCI2-регулятор апоптоза; CaCC -Ca²⁺-зависимый хлоридный канал; (p)CREB – фосфорилированный сАМР-зависимый элемент; DAG диацилглицерин; GIRK - G-белоксвязанный входящий калиевый канал; ІР, – инозитолтрифосфат; МАРК - митогенактивируемая протеинкиназа: MEK - APK /ERKкиназа; PDK-1 - фосфоинозитолзависимая протеинкиназа-1; PIP, фосфатидилинозитол-4,5-дифосфат; PIP. - фосфатидилинозитол-3,4,5-трифосфат; PI3K фосфатидилинозитол-3-киназа; РКВ – протеинкиназа В (Akt); PLC – фосфолипаза C; RhoA – Ras-подобный белок

Нижние звенья этого сигнального пути вызывают фосфорилирование протеинкиназы В (Akt), ингибирование проапоптотических белков ВАD/ВАХ и активностей каспазы-3 и каспазы-9 [31]. Как правило, в моделях in vivo уменьшение апоптоза кардиомиоцитов, в том числе и индуцированного Докс, сочетается с уменьшением размера необратимого повреждения миокарда и улучшением его сократительной функции [32]. Активация GalR1 и GalR2 стимулирует сигнальные пути, активируемые митогенактивируемыми протеинкиназами (MEK1/2 и ERK1/2), приводящие к ингибированию открытия митохондриальной поры временной проницаемости (mPTP). Этот механизм отвечает за выживание и подвижность клеток [33]. Кроме того, активация фосфорилирования ERK способствует повышенной экспрессии рецепторов, активируемых пролифераторами пероксисом (PPARs), контролирующих энергетический метаболизм, включая и экспрессию РРАКу, стимулирующего поглощение и окисление глюкозы кардиомиоцитами [34]. Из этого следует, что пептид G способен запускать различные механизмы, которые способствуют защитным кардиометаболическим эффектам при повреждении сердца Докс.

Окислительный стресс — один из ведущих факторов кардиотоксичности, инициируемой Докс [2, 4]. В нашей работе это подтверждено высокими уровнями продуктов ПОЛ ТБКАП как на системном, так и на органном уровне, а также повышенной активностью специфичного маркера некроза

сердца - КК-МВ - в плазме крови животных, получавших Докс. Для понимания особенностей окислительного стресса в сердце под действием Докс мы изучили его воздействие на ключевые ферменты антиоксидантной защиты - Cu,Zn-SOD, CAT и GSH-Рх. Под влиянием Докс в сердце статистически значимо снизилась активность только GSH-Px, активность Cu,Zn-SOD снижалась незначительно, а CAT увеличилась по сравнению с контролем. Столь разнонаправленный ответ антиоксидантных ферментов связан с использованием низкой кумулятивной дозы Докс (8 мг/кг) в наших опытах. Докс, генерируя небольшое количество АФК, может не влиять на активность антиоксидантных ферментов или активировать ряд сигнальных путей, приводящих к индукции ферментов антиоксидантной защиты. Такие данные получены на моделях индуцируемого Докс окислительного стресса у животных различных видов [35, 36]. Важно, что введение пептида G на фоне повреждения сердца Докс существенно снижало содержание продуктов ПОЛ в сердце и плазме крови животных и одновременно улучшало интегрированность мембран кардиомиоцитов. Эти эффекты уменьшения окислительного стресса сопровождались увеличением активности Cu,Zn-SOD и GSH-Px, что указывает на усиление антиоксидантной защиты. Следует отметить, что внутриклеточная Cu, Zn-SOD контролирует не только образование АФК, но и высокореактивного пероксинитрита, и ограничивает таким образом нитрозильный стресс [37]. Наблюдаемое увеличение активности Cu, Zn-SOD и GSH-Px могло быть связано с увеличением экспрессии генов этих ферментов под влиянием пептида G. Известно также, что некоторые пептиды обладают способностью перехватывать АФК и ингибировать ПОЛ [38]. Однако данные о прямом антиоксидантном действии галанина или пептидов, содержащих карнозиновую последовательность на С-конце молекулы, отсутствуют. Несомненно, механизмы снижения окислительного стресса с помощью пептида G заслуживают дальнейшего изучения. Мы полагаем, что основными факторами, обуславливающими фармакологическую эффективность пептида G и снижение кардиотоксичности, вызванной длительным введением Докс, можно считать улучшение энергетического обеспечения кардиомиоцитов и усиление ферментативной антиоксидантной защиты. Схема, иллюстрирующая кардиопротектное действие этого синтетического агониста рецепторов галанина, представлена на рис. 5.

Ранее токсичность пептида G была изучена нами на мышах линии BALB/с. Введение пептида G не вызывало каких-либо признаков интоксикации и гибели животных в течение 14 дней наблюдения [39]. Существенно, что наиболее высокая из испытанных доз пептида G (520 мг/кг) многократно превышала его кумулятивную дозу, использованную в настоящей работе с Докс (4.2 мг/кг). Эти данные свидетельствуют о хорошей переносимости пептида G и перспективности проведения доклинических исследований этого препарата, обладающего широким спектром защитного действия при Доксиндуцированной КМП.

ЗАКЛЮЧЕНИЕ

Несмотря на использование антрациклинов нового поколения со сниженной кардиотоксичностью (эпирубицина и идарубицина), Докс остается препаратом, обладающим высоким противоопухолевым эффектом, что, в свою очередь, требует снижения повреждений сердечно-сосудистой системы при его химиотерапевтическом использовании. Приведенные экспериментальные факты свидетельствуют о возможности коррекции КМП у крыс, вызванной хроническим применением Докс, с помощью пептида G - фармакологического агониста рецепторов галанина. Снижение кардиотоксического действия Докс при введении пептида G подтверждено уменьшением систолической дисфункции левого желудочка и уменьшением активности в крови КК-МВ - маркера повреждения сердечной мышцы. Эти эффекты прямо связаны со снижением окислительного стресса и улучшением метаболического и антиоксидантного состояния сердца. Для понимания механизмов дей-

Рис. 5. Активация рецептора галанина GalR2 пептидом G снижает систолическую дисфункцию миокарда при КМП, индуцированной Докс, благодаря улучшению метаболического и антиоксидантного состояния сердца

ствия пептида необходимо изучить роль активации рецепторов галанина этим лигандом и пути передачи сигнала в кардиомиоцитах. Полученные данные создают предпосылки для изучения возможности использования фармакологических лигандов рецепторов галанина в онкологии с целью снижения токсичности антрациклиновых антибиотиков. При этом они свидетельствуют о целесообразности доклинического исследования пептида G, который может быть использован в качестве потенциального противоишемического, мембраностабилизирующего и антиоксидантного лекарственного средства. •

Авторы выражают искреннюю благодарность руководителю лаборатории синтеза пептидов ФГБУ «НМИЦ кардиологии» МЗ РФ М.В. Сидоровой за предоставление пептида G и ценные советы при обсуждении результатов работы. Авторы признательны А.В. Просвирнину за проведение ЭхоКГ-исследования и обработку результатов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 18-015-00008 и 18-015-00009).

Конфликт интересов. Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. // Pharmacol. Rev. 2004. V. 56. № 2. P. 185–229.
- 2. Zhang S., Liu X., Bawa-Khalfe T., Lu L.S., Lyu Y.L., Liu L.F., Yeh E.T. // Nat. Medicine. 2012. V. 18. № 11. P. 1639–1642.
- 3. Tokarska-Schlattner M., Wallimann T., Schlattner U. // C. R. Biol. 2006. V. 329. \mathbb{N}_2 9. P. 657–668.
- 4. Octavia Y., Tocchetti C.G., Gabrielson K.L., Janssens S., Crijns H.J., Moens A.L. // J. Mol. Cell. Cardiol. 2012. V. 52. № 6. P. 1213–1225.
- 5. Timotin A., Pisarenko O., Sidorova M., Studneva I., Shulzhenko V., Palkeeva M., Serebryakova L., Molokoedov A., Veselova O., Cinato M., et al. // Oncotarget. 2017. V. 8. № 13. P. 21241–21252.
- 6. Pisarenko O., Timotin A., Sidorova M., Studneva I., Shulzhenko V., Palkeeva M., Serebryakova L., Molokoedov A., Veselova O., Cinato M., Boal F., Tronchere H., Kunduzova O. // Oncotarget. 2017. V. 8. № 60. P. 101659–101671.
- 7. Азьмуко А.А., Веселова О.М., Молокоедов А.С., Овчинников М.В., Палькеева М.Е., Писаренко О.И., Серебрякова Л.И., Сидорова М.В., Студнева И.М. Патент № 2648846. РФ. А61К 38/10 (2006.01). 2018.
- 8. Palkeeva M., Studneva I., Molokoedov A., Serebryakova L., Veselova O., Ovchinnikov M., Sidorova M., Pisarenko O. // Biomed. Pharmacother. 2019. V. 109. P. 1556–1562.
- 9. Studneva I., Palkeeva M., Veselova O., Molokoedov A., Ovchinnikov M., Sidorova M., Pisarenko O. // Cardiovascular. Toxicol. 2019. V. 19. № 2. P. 136–146.
- Bergmeyer H.U. Methods of enzymatic analysis. New York: Acad. Press, 1974. P. 1464–1467, 1772–1776, 1777–1781, 2127–2131.
- Draper H.H., Hadley M. // Meth. Enzymol. 1990. V. 186.
 P. 421–434.
- 12. Beauchamp C., Fridovich I. // Anal. Biochem. 1971. V. 44. $\ensuremath{\mathbb{N}}_2$ 1. P. 276–287.
- 13. Beers R.F., Sizer I.W. // J. Biol. Chem. 1952. V. 195. \mathbb{N}_2 1. P. 133–140.
- 14. Paglia D.E., Valentine W.N. // J. Lab. Clin. Med. 1967. V. 70. \mathbb{N}_2 1. P. 158–169.
- 15. Uchlyama M., Mihara M. // Anal. Biochem. 1978. V. 86. $\ensuremath{\mathbb{N}}\xspace 1$. P. 271–278.
- 16. Морфологическая диагностика. Подготовка материала для гистологического исследования и электронной микроскопии. Руководство под ред. Д.Э. Коржевского. СПб.: Спец-Лит, 2013. 127 с.
- 17. Кактурский Л.В., Бахтин А.А. // Тезисы Всероссийской научно-практической конференции «Современные подходы в клинико-морфологической диагностике и лечении заболеваний человека», Санкт-Петербург, 9–10 октября 2015. С. 103–106.

- 18. Zervou S., Whittington H.J., Russell A.J., Lygate C.A. // Mini-Rev. Med. Chem. 2016. V. 16. P. 19-28.
- 19. Hrelia S., Fiorentini D., Maraldi T., Angeloni C., Bordoni A., Biagi P.L., Hakim G. // Biochim. Biophys. Acta. 2002. V. 1567. N 1–2. P. 150–156.
- 20. Sanborn T., Gavin W., Berkowitz S., Perille T., Leach M. // Am. J. Physiol. 1979. V. 273. № 5. P. H535–H541.
- 21. Weisner R.J., Deussen A., Borst M., Schrader J., Grieshaber M.K. // J. Mol. Cell. Cardiol. 1989. V. 21. № 1. P. 49-59.
- 22. Safer B., Williamson J.R. // J. Biol. Chem. 1973. V. 248. \mathbb{N}_2 7. P. 2570–2579.
- 23. La Noue K.F., Walajtys E.I., Williamson J.R. // J. Biol. Chem. 1973. V. 248. № 20. P. 7171–7183.
- 24. McKhann G.M., Tower D.B. // Am. J. Physiol. 1961. V. 200. P. 420–424.
- 25. Katunuma N., Okada M., Nishi Y. // Adv. Enz. Regul. 1966. V. 4. P. 317–336.
- 26. Watanabe T., Hamazaki N., Aoyama S. // Israel Med. Sci. 1969. V. 5. P. 496–500.
- 27. Katunuma N., Jkada M. // Biochem. Biophys. Res. Commun. 1965. V. 19. P. 109–113.
- 28. Webling K.E.B., Runesson J., Bartfai T., Langel Ü. // Front. Endocrinol. 2012. V. 3. Article 146.
- 29. Tian R., Abel E.D. // Circulation. 2001. V. 103. \mathbb{N}_2 24. P. 2961–2966
- 30. Lang R., Gundlach A.L., Holmes F.E., Hobson S.A., Wynick D., Hökfelt T., Kofler B. // Pharmacol. Rev. 2015. V. 67. № 1. P. 118–175
- 31. Runesson J. Galanin receptor ligands. Stockholm University, 2009. 36 p.
- 32. Krijnen P.A., Nijmeijer R., Meijer C.J., Visser C.A., Hack C.E., Niessen H.W. // J. Clin. Pathol. 2002. V. 55. № 11. P. 801–811.
- 33. Hausenloy D.J., Duchen M.R., Yellon D.M. // Cardiovasc. Res. 2003. V. 60. P. 617–625.
- 34. Jay M.A., Ren J. // Curr. Diab. Rev. 2007. V. 3. № 1. P. 33–39. 35. Aniss H.A., Said A.A., Sayed I.H., AdLy C. // Egypt. J. Hosp. Med. 2012. V. 48. P. 383–393.
- 36. Li T., Singal P.K. // Circulation. 2000. V. 102. № 17. P. 2105–2110.
- 37. Ferdinandy P., Schulz R. // Br. J. Pharmacol. 2003. V. 138. \mathbb{N}_2 4. P. 532–543.
- 38. Power O., Jakeman P., Fitz Gerald R.J. // Amino Acids. 2013. V. 44. $\[N_2\]$ 3. P. 797 –820.
- 39. Серебрякова Л.И., Палькеева М.Е., Студнева И.М., Овчинников М.В., Веселова О.М., Молокоедов А.С., Азьмуко А.А., Арзамасцев Е.В., Афанасьева Е.Ю., Терехова О.А. и др. // Биомед. химия. 2019. Т. 65. № 3. С. 231–238.