УДК 616.8-091.931: 57.089.62: 57.084.1

Хирургическое моделирование посттравматического глиального рубца спинного мозга у крыс

Г. Б. Телегин^{1*}, А. Н. Минаков¹, А. С. Чернов¹, В. Н. Манских³, Д. С. Асютин², Н. А. Коновалов², А. Г. Габибов⁴

¹Филиал Института биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН, 142290, Пущино, просп. Науки, 6

²Национальный научно-практический медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко Министерства здравоохранения Российской Федерации, 125047, Москва, 4-я Тверская-Ямская ул., 16

³Московский государственный университет им. М.В. Ломоносова, 119991, Москва, Ленинские горы, 1

^₄Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН, 117997, Москва, ул. Миклухо-Маклая, 16/10

*E-mail: telegin@bibch.ru

Поступила в редакцию 24.06.2019

Принята к печати 02.08.2019

DOI: 10.32607/20758251-2019-11-3-75-81

РЕФЕРАТ Разработан и верифицирован оригинальный минимально инвазивный метод хирургического моделирования посттравматического глиального рубца спинного мозга у крыс. Модель предназначена для использования в качестве биологической платформы при тестировании методов стимулирования регенеративных процессов центральной нервной системы. Унифицированность модели делает ее универсальной как для имплантационных методик, так и для разработки подходов системного действия. Имея в распоряжении стандартный структурный дефект спинного мозга, исследователи получат уникальную возможность апробации *in vivo* перспективных методик восстановления спинальных функций в посттравматическом периоде. Разработаны анестезиологическое пособие, хирургическая тактика и комплекс реабилитационных мероприятий в хроническом постоперационном периоде. Предварительную оценку степени тяжести последствий экспериментального воздействия осуществляли прижизненно с использованием стандартной методики регистрации двигательной активности крыс в послеоперационном периоде спинальной травмы. Окончательные выводы делали на основании изучения гистологических срезов глиального рубца спинного мозга крыс в трех взаимно перпендикулярных пространственных плоскостях.

КЛЮЧЕВЫЕ СЛОВА глиальный рубец, криоаппликация, лабораторная крыса, регенерация аксонов, травма спинного мозга, унилатеральная гемиляминэктомия, хирургическое биомоделирование.

СПИСОК СОКРАЩЕНИЙ СМ – спинной мозг; ТСМ – травма спинного мозга; ЗRs – принципы биоэтики использования лабораторных животных в эксперименте: уменьшение (Reduce), ограничение (Refine), замена альтернативными методами (Replace); BBB-шкала – балльная шкала Basso, Beattie, Bresnahan для оценки локомоторной активности крыс в экспериментах по изучению нарушений проводимости нервных импульсов.

ВВЕДЕНИЕ

Травма спинного мозга (TCM) – одна из основных причин инвалидности [1], сопряжена с неизбежным формированием в посттравматическом периоде глиального рубца, препятствующего регенеративному росту аксонов и проведению нервных импульсов. В клинической практике повреждения СМ сопровождаются серьезным функциональным дефицитом, имеющим перспективы развития необратимого паралича областей тела, расположенных дистально от области травмы. Спустя несколько недель после травмы у 30% пациентов развивается посттравматическая сирингомиелия, которая приводит к ослаблению их неврологического статуса [2].

Перспективы лечения пациентов с повреждениями спинного мозга будут зависеть от успеха экспериментальных исследований, основанных на использовании животных моделей надлежащего качества.

В соответствии с принципами 3R для использования в биомоделировании предпочтение отдается животным как можно меньшего размера. Однако в отношении биомоделирования на спинном мозге, сопряженного с высокой степенью хирургической интервенции, минимизация размеров животного имеет очевидные ограничения ввиду необходимости достаточного объема моделируемого посттравматического рубца, позволяющего использовать его в разработках методик восстановления спинальных функций. Использование мелких грызунов считается самым удачным для моделирования ТСМ из-за общности патофизиологии травмы с клинической практикой [3, 4]. Исходя из всех описанных условий, видовое предпочтение использования в качестве животной модели было отдано лабораторной крысе.

Из большинства моделей TCM у крыс наибольшее распространение получили модели повреждений CM закрытого типа: компрессионная, имитирующая сдавливание, и контузионная, имитирующая ушиб. Однако эти модели трудновоспроизводимы и не могут использоваться для изучения регенерации спинного мозга при структурных повреждениях [3].

Нашей исследовательской группой разработан подход к моделированию TCM с использованием криоаппликатора оригинальной конструкции. В основу предложенного инновационного способа моделирования стандартного глиального рубца посредством криоаппликации легли работы Васильева С.А. и соавт. по изучению криодеструкции спинного мозга [5, 6], а также методы криоанальгезии нервного волокна [7].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В целях оптимальной визуализации и идентификации анатомических структур, а также в виду необходимости обеспечения оперативному приему достаточного пространства использовали крупных, массой 320–358 г, самцов крыс стока SD, SPF-статуса. Животных содержали в стандартных условиях НПП «Питомник лабораторных животных» ФИБХ РАН. Все манипуляции с животными одобрены Институтской комиссией по контролю за содержанием и использованием лабораторных животных ФИБХ РАН.

Всего в экспериментах по апробации использования криотехнологий при моделировании структурного дефекта спинного мозга крыс использовано 26 животных: 14 — на этапах отработки методологии эксперимента, включая разработку конструкции криопроводника, выбор экспозиции охлаждения спинного мозга и контроль доступа, и 12 — на стадии верификации избранной методики низкотемпературного воздействия (локальной криоаппликации).

Предоперационная подготовка и анестезиологическое пособие

За 24 ч до операции животных пересаживали в клетки с чистой подстилкой и водой. Оперативное вмешательство проводили под общим ингаляционным наркозом изофлюраном, премедикацию не использовали.

Хирургический доступ

Используя стандартный микрохирургический набор инструментов, в проекции пересечения позвоночного столба с реберной дугой животного производили медианное рассечение кожи, подкожной фасции и жировой клетчатки протяженностью около 2 см (рис. 1Б). Краниальнее схождения апоневрозов дорсальной группы мышц позвоночного столба (musculus erector spinae) к остистым отросткам позвонков поясничного отдела определяли остистый отросток последнего грудного позвонка Th13 (puc. 1A). Под визуальным контролем при помощи операционного бинокулярного микроскопа (Optika, Италия) скелетировали остистый отросток и дорсальную дужку позвонка доступа (рис. 1В). Гемостаз обеспечивали посредством использования термокаутера (FTS, Англия). В целях обеспечения достаточного пространства оперативному приему остистый отросток резецировали. Унилатеральную гемиляминэктомию осуществляли оригинальным способом - посредством портативного стоматологического микромотора. Использовали метод торцевой парамедианной перфорации бором с алмазным напылением, диаметром 1.0 мм при 30 тыс. об/мин (рис. 1Г). Твердую мозговую оболочку при этом не затрагивали, в чем убеждались по факту отсутствия ликвореи. После завершения ляминэктомии область доступа промывали физиологическим раствором, избытки которого синхронно аспирировали вакуумным отсосом (Millipore, Германия).

Оперативный прием

Спинной мозг всех животных опытной группы подвергали локальному охлаждению посредством апплицирования криопроводника через твердую мозговую оболочку (*puc. 1Д,E*). Диаметр проводника в зоне контакта с тканью биологического субстрата – 0.8 мм, материал – медь, удаленность от источника холода (жидкого азота) в приборе оригинального конструктивного исполнения – 9 см, экспозиция апплицирования – 1 мин, собственная температура проводника в зоне контакта – 20°С.

Животным контрольной группы (четыре особи) оперативный доступ к спинному мозгу организован, как у опытных, но без локального охлаждения.

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Рис. 1. Этапы разработки оперативного доступа: A – анатомическая 3D-реконструкция; Б – топографические ориентиры; B – скелетирование; Г – односторонняя гемиляминэктомия; Д – криозонд; E – охлаждение спинного мозга

Закрытие операционной раны

Ушивание тканей производили послойно, используя атравматический нерассасывающийся монофиламентный материал Prolene 6/0 (Ethicon, США).

Для защиты поверхности операционной раны применяли однократное нанесение суспензии микропористого алюминия (Vetoquinol, Франция).

Температурный режим

В целях компенсации гипотермии, возникающей во время наркоза, в течение операции животных фиксировали на операционном столике с температурой 38°С. Сразу после операции и до полного выхода из наркоза животных помещали в клетку, установленную на электрическом подогреваемом столике, и организовывали принудительное обогащение воздуха кислородом.

Послеоперационный мониторинг

Период клинического наблюдения в опыте составил 30 дней. Отработанный протокол хирургической интервенции и схема клинического мониторинга обеспечивали 100% выживаемость крыс.

Для профилактики раневой инфекции, ввиду значительного объема хирургической травмы и хронического периода постоперационного наблюдения, проводили превентивную антибиотикотерапию посредством внутримышечного введения препарата «Байтрил» (энрофлоксацин, 25 мг/мл) в дозе 10 мг/кг 1 раз в день курсом 10 дней.

Для послеоперационной анальгезии крысам назначали препарат «Норокарп» (карпрофен) в дозировке 10 мг/кг живого веса 1 раз в день курсом 4–6 дней.

В целях регидратации, сразу после операции, животным вводили предварительно нагретый до 38°C физиологический раствор натрия хлорида в объеме 5 мл, подкожно.

На всем протяжении хронического опыта оценивали внешний вид прооперированных животных, неспровоцированное поведение, частоту дыхания, потребление корма и воды, наличие естественных отправлений, строительство гнезда, реакцию на руки, цвет слизистых оболочек, тургор кожи, состояние операционной раны, динамику изменений массы тела, температуру тела (ректально), а также выраженность моторной и чувствительной функций тазовых конечностей и хвоста.

Оценка локомоторной активности

Степень влияния экспериментального воздействия на локомоторную активность крыс тестировали «в открытом поле», согласно традиционно используемой при моделировании спинальной травмы 21-балльной шкале BBB [8].

Морфологическое исследование

Спинной мозг из позвоночного канала (в пределах позвонков T12-L1) выделяли пересечением боковых стенок дорсальных дужек позвонков фрезой, что гарантировало максимальную сохранность дорсальной поверхности спинного мозга в месте воздействия. Ориентировочно место холодового воздействия макроскопически определяли по светло-коричневому окрашиванию тканей, сопоставимым по размеру с 3/4 диаметра спинного мозга. Образцы фиксировали в течение 24 ч в 10% растворе формалина на фосфатном буфере (рН 7.4). После фиксации материал дегидратировали в изопропиловом спирте (Isoprep, Биовитрум), заливали в парафин, готовили срезы (толщиной 5 мкм) на ротационном микротоме (RM2245, Leica) и окрашивали гематоксилином и эозином по рутинным протоколам [9].

С целью всесторонней оценки морфологических характеристик поражения были изготовлены серийные срезы в трех взаимно перпендикулярных плоскостях – саггитальной (оценивали глубину и продольную протяженность дефекта), фронтальной (площадь в плоскости пятна контакта) и сегментарной (поперечный размер дефекта относительно диаметра сечения спинного мозга). Для морфологических измерений в каждой плоскости отбирали срез с максимальной площадью дефекта. Топографию пораженных структур спинного мозга определяли согласно данным [10].

Фотографирование препаратов и морфометрические процедуры выполняли с помощью микроскопа Axioscope A1 и камеры MRc5 с использованием программы AxioVision 3.0 (Carl Zeiss, Германия). Полученные данные обрабатывали с помощью пакета статистических программ SigmaPlot statistic (v. 13.0).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Разработка оперативного доступа

Изучение возможностей восстановления спинальных функций требует моделирования посттравматического глиального рубца – стандартного и минимального по объему. В отличие от преимущественно механических контузионных воздействий на спинной мозг, применявшихся при моделировании спинальной травмы, мы моделировали глиальный рубец с использованием оригинальной методики локального низкотемпературного воздействия на спинной мозг. Прообразом идеи послужил опыт применения криотехнологий в целях криоанальгезии периферических нервов и криодеструкции участков ткани центральной нервной системы [5–7].

В целях обеспечения максимально корректной интерпретации результатов, полученных на моде-

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

ли посттравматического глиального рубца спинного мозга, при разработке методик восстановления спинальных функций было решено прибегнуть к унилатеральному воздействию на спинной мозг, предоставляющему возможность использования в качестве контроля клинических и патоморфологических изменений в интактную сторону.

В связи с необходимостью стандартизации уровня доступа к спинному мозгу предложены такие оригинальные подходы, как использование топографии схождения апоневрозов дорсальной группы мышц позвоночного столба в качестве интраоперационного ориентира последнего грудного позвонка со стороны вектора операционного действия (рис. 1Б) и использование твердой мозговой оболочки в качестве своеобразного демпфера прямому холодовому воздействию на спинной мозг. Необходимо отметить, что у более молодых животных, имеющих соответственно меньший размер, а также у крыс с темной пигментацией (например, линия Dark Agouti), интраоперационная навигация может быть существенно затруднена - идущие к остистым отросткам поясничных позвонков апоневрозы дорсальной группы мышц позвоночного столба выглядят гораздо менее контрастно, чем у крупных крыс-альбиносов.

Таким образом, методика апплицирования криопроводника на спинной мозг позволяет максимально локализовать зону низкотемпературного воздействия и минимизировать неспецифические контузионные повреждения органа в процессе проведения оперативного приема. Индикатором структурной сохранности спинного мозга во время унилатеральной гемиляминэктомии, выполняемой методом торцевой перфорации, было отсутствие ликвореи. Животных с ятрогенным дуроцентезом из использования в эксперименте исключали. В целях организации чрескостного доступа к спинному мозгу предложено использование стоматологического бора (*puc. 2*).

Показатели клинического мониторинга

У большинства крыс с моделируемым посттравматическим рубцом спинного мозга в соответствии со шкалой ВВВ [9] наблюдалась моноплегия со стороны воздействия, сохраняющаяся в течение 21 дня. Животные опытной группы показывали средний уровень нарушения локомоторных функций, соответствующий 2.3 балла по шкале ВВВ, в то время как в контрольной группе, без холодового воздействия, полное восстановление двигательной активности наблюдали через 5 дней после оперативного вмешательства.

Используемые в настоящее время модели TCM приводят к существенному нарушению функций мочевыделительной системы у крыс, что является

Рис. 2. Гемиляминэктомия дорсальной дужки Th13позвонка крысы стоматологическим бором

серьезным недостатком [11]. Приходится несколько раз в день вручную опорожнять мочевой пузырь у животных после нанесения травмы во избежание разрыва мочевого пузыря и развития инфекционного воспаления [12, 13]. Разработанная нами модель не имеет подобного недостатка благодаря минимизации хирургической травмы. После нанесения травмы у животных на протяжении всего времени наблюдения сохранялась способность к естественному опорожнению мочевого пузыря и кишечника на фоне стабильно сохраняющейся моноплегии. Способность к самостоятельному мочеиспусканию и дефекации является залогом жизнеобеспечения в хроническом постоперационном периоде, профилактирует развитие у крыс дистресса и неспецифическое травмирование спинного мозга при стимулировании естественных отправлений методом пальпаторного воздействия на стенки кишечника и мочевого пузыря через брюшную стенку животного.

Результаты гистологического исследования

Согласно данным гистологического исследования спинного мозга у всех животных на 30-й день после криодеструкции наблюдалась в целом одинаковая гистологическая картина (*puc.* 3). В центре зоны дефекта образовывалась полость, в той или иной степени заполненная клеточным дебрисом и макрофагоподобными клетками. Часть полости выполнена элементами созревающего глиомезодермального рубца, более выраженными со стороны мозговых оболочек и образующими тяжи и шварты. Большая часть стенки, в том числе и участки, прилегающие к рубцовой ткани, представлены разволокненным и вакуолизированным нейропилем, без резких гра-

Рис. 3. Типичная гистологическая картина криодеструкции спинного мозга на 30-й день после операции по предложенному методу. А – сагиттальное сечение (стрелкой показаны стенки кратерообразного дефекта). Б – фронтальное сечение (отчетливо видна полость структурного дефекта). В – сегментарное сечение (отчетливо видна полость структурного дефекта). Окраска гематоксилином и эозином (увеличение ×25)

ниц переходящим в интактную нервную ткань. В зоне вакуоляризации нейроны полностью отсутствовали, зато имелись клетки неопределенной морфологии с признаками апоптоза (кариорексис и кариопикноз ядер). Острое экссудативное воспаление в зоне дефекта отсутствовало, хотя имела место

Рис. 4. Морфология пораженного участка спинного мозга при проведении гемиляминэктомии (увеличение ×200). А – интактная ткань; Б – зона реактивных изменений (рарификация нейропиля); В – зона некроза, стрелки – клетки воспалительного инфильтрата (лимфоциты или микроглиальные элементы)

умеренно выраженная инфильтрация лимфоцитами и микроглиальными элементами. Площадь общей зоны повреждения в сагиттальной плоскости составила $3.6 \pm 0.25 \text{ мм}^2$ (n = 6) (puc. 3A), на фронтальном срезе $3.2 \pm 0.36 \text{ мм}^2$ (n = 4) (puc. 3B), а в поперечном сечении $1.1 \pm 0.1 \text{ мм}^2$ (n = 4) (puc. 3B). Во всех случаях экспериментального воздействия структурным изменениям подвергались дорсальные рога серого вещества и прилежащие части боковых канатиков спинного мозга в области tractus pyramidalis et tractus dorsolateralis.

Стоит отметить, что в группе контроля, где осуществлялась только гемиляминэктомия без какоголибо воздействия на спинной мозг, зарегистрировано образование в зоне доступа структуры типа глиомезедермального рубца (*puc.* 4). Этот факт можно отнести к техническим погрешностям методики выполнения доступа, однако он же свидетельствует и о том, насколько чувствителен спинной мозг к любого рода воздействиям.

Дальнейшая оптимизация технологии локального охлаждения спинного мозга будет заключаться в усовершенствованиях оригинальной конструкции криопроводника и оптимизации условий низкотемпературного воздействия. Проведение детальных исследований на животных моделях, связанных с совершенствованием хирургических техник, использованием инновационных оптико-лазерных технологий и других методик, приблизит практических хирургов к решению проблемы функционального восстановления спинного мозга в посттравматическом периоде [14-16].

ЗАКЛЮЧЕНИЕ

В исследовании обоснован, разработан и верифицирован метод моделирования посттравматического глиального рубца спинного мозга у крыс. Точное следование установленным анатомическим ориентирам, использование оригинального инструментального обеспечения и методик локального холодового воз-

СПИСОК ЛИТЕРАТУРЫ

- 1. Nas K., Yazmalar L., Şah V., Aydın A., Öneş K. // World J. Orthop. 2015. V. 18. № 6 (1). P. 8–16.
- 2. Falci S.P., Indeck C., Lammertse D.P. // J. Neurosurg. Spine. 2009. V. 11. P. 445–446.
- 3. Minakov A.N., Chernov A.S., Asutin D.S., Konovalov N.A., Telegin G.B. // Acta Naturae. 2018. V. 10. № 3 (38). P. 4–10.
- 4. Minakov A., Chernov A., Sirotkin A., Asutin D., Konovalov N., Telegin G. // Lab. Animals. 2019. V. 53(1S). P. 130.
- 5. Vasiliev S.A., Krylov V.V., Pesnya-Prasolov S.B., Zuev A.A., Levin R.S., Pavlov V.N., Zhidkov I.L., Khovrin V.V., Fedorov D.N., Vetsheva N.N. // Neurosurgery. 2010. № 4. P. 58–64.
- 6. Vasiliev S.A., Pesnya-Prasolov Š.B., Kungurtsev S.V., Pavlov V.N. // Clin. Exp. Surg. Petrovsky J. 2015. № 1. P. 15–21.
- 7. Ilfeld B.M., Gabriel R.A., Trescot A.M. // Br. J. Anaesth. 2017. V. 119. № 4. P. 703-706.
- 8. Bispo dos Santos G., Cristante A.F., Marcon R.M., Inácio de Souza F., Pessoa de Barros Filho T.E., Damasceno M.L. // Acta Ortop. Bras. 2011. V. 19. № 2. P. 87–91.
- 9. Trofimenko A.I., Chitanava T.V., Dzhopua M.A., Kade A.Kh., Egiev I.K., Chechelyan V.N., Sergeeva Y.A. // Modern

действия на спинной мозг позволили унифицировать моделируемый объект. Согласно данным клинических наблюдений и гистологических исследований, предлагаемая методика позволяет говорить о создании адекватной животной модели посттравматического рубца спинного мозга. ●

Результаты работы получены с использованием животных из УНУ «Био-модель» ИБХ РАН.

Problems Sci. Edu. 2017. № 3. P. 22–31.

- 10. Ноздрачев А.Д., Поляков Е.Л. Анатомия крысы. СПб.: Издательство «Лань», 2001. 464 с.
- 11. Krishna V., Andrews H., Jin X., Yu J., Varma A., Wen X., Kindy M.A. // J. Vis. Exp. 2013. V. 78. e50111, doi: 10.3791/50111.
- 12. David B.T., Steward O. // Exp Neurol. 2010. V. 226. № 1. P. 128–135. doi: 10.1016/j.expneurol.2010.08.014.
- Wada N., Shimizu T., Takai S., Shimizu N., Kanai A.J., Tyagi P., Kakizaki H., Yoshimura N. // Neurourol. Urodyn. 2017. V. 36. № 5. P. 1301–1305. doi: 10.1002/nau.23120.
- 14. Marcol W., Slusarczyk W., Gzik M., Larysz-Brysz M., Bobrowski M., Grynkiewicz-Bylina B., Rosicka P., Kalita K., Węglarz W., Barski J.J. // J. Reconstr. Microsurg. 2012. V. 28. № 8. P. 561–568.
- 15. Kuzmina A.G., Baranov K.K., Gorbatova N.E., Kurilov V.P., Kuzmin G.P., Sirotkin A.A., Tikhonevich O.V., Zolotov S.A. // J. Appl. Spectroscopy. 2016. V. 83. № 6–16. P. 708.
- 16. Bogachouk A.P., Storozheva Z.I., Telegin G.B., Chernov A.S., Proshin A.T., Sherstnev V.V., Zolotarev Yu.A., Lipkin V.M. // Acta Naturae. 2017. V. 9. № 3(34). P. 64–70.