УДК 602.9:577.218

Новый кластер микроРНК, ответственный за репрограммирование к плюрипотентному состоянию

В. В. Шерстюк^{1,2,3,4#}, Г. И. Давлетшина^{1,2#}, Ю. В. Вяткин^{3,5,6}, Д. Н. Штокало^{5,6,7}, В. В. Власов⁴, С. М. Закиян^{1,2,3,4*}

¹Федеральный исследовательский центр Институт цитологии и генетики СО РАН, 630090, Новосибирск, просп. Академика Лаврентьева, 10 ²Национальный медицинский исследовательский центр им. академика Е.Н. Мешалкина Министерства здравоохранения РФ, 630055, Новосибирск, ул. Речкуновская, 15 ³Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, ул. Пирогова, 2 ⁴Институт химической биологии и фундаментальной медицины СО РАН, 630090, Новосибирск, просп. Академика Лаврентьева, 8 ⁵ООО «АкадемДжин», 630090, Новосибирск, просп. Академика Лаврентьева, 6 ⁶Институт Сен-Лорана, 01801, Вобурн, США ⁷Институт систем информатики им. А.П. Ершова СО РАН, 630090, Новосибирск, просп. Академика Лаврентьева, 6 [#]Эти авторы внесли равный вклад в написание данной статьи. *E-mail: zakian@bionet.nsc.ru Поступила в редакцию 31.10.2018

Принята к печати 10.04.2019

DOI: 10.32607/20758251-2019-11-2-92-97

РЕФЕРАТ Репрограммирование соматических клеток к плюрипотентному состоянию – сложный, многоэтапный процесс, в регуляции которого участвует множество факторов, в том числе активно изучаемые в последнее время некодирующие РНК, в частности микроРНК. МикроРНК играют важную роль во многих процессах, включая и репрограммирование клеток. Нами изучена возможность репрограммирования фибробластов крысы с делецией участка ДНК, кодирующего кластер из 14 микроРНК (начиная с miR-743a и до miR-465). Показано, что делеция этого участка значительно снижает эффективность репрограммирования клеток. Клетки, полученные в ходе репрограммирования, отличаются от эмбриональных и индуцированных плюрипотентных стволовых клеток крысы, что свидетельствует о незавершенности процесса репрограммирования. Таким образом, можно предположить, что данный кластер микроРНК либо отдельные его представители участвуют в регуляции процесса репрограммирования клеток крысы к плюрипотентному состоянию.

КЛЮЧЕВЫЕ СЛОВА микроРНК, плюрипотентные стволовые клетки, репрограммирование, CRISPR/Cas9. СПИСОК СОКРАЩЕНИЙ ИПСК – индуцированные плюрипотентные стволовые клетки; мкРНК – микроРНК; ЭСК – эмбриональные стволовые клетки; CRISPR – Clustered Regulatory Interspaced Short Palindromic Repeats; PAM – мотив, прилежащий к протоспейсеру (Protospacer Adjacent Motif); ОТ-ПЦР – обратная транскрипция с последующей полимеразной цепной реакцией; ЩФ – щелочная фосфатаза.

введение

Плюрипотентные стволовые клетки – это клетки, способные дифференцироваться в производные всех трех зародышевых листков. Одним из способов получения плюрипотентных стволовых клеток является репрограммирование соматических клеток путем сверхэкспрессии факторов плюрипотентности Oct4, Sox2, Klf4 и с-Myc [1]. В результате получают так называемые индуцированные плюрипотентные клетки (ИПСК), которые широко применяются для изучения процессов раннего развития и дифференцировки, моделирования наследственных заболеваний, а также в качестве перспективного источника клеточных производных, используемых в регенеративной медицине. Механизмы, отвечающие за процесс репрограммирования, хорошо изучены, известны изменения в экспрессии генов, организации хроматина и метаболизме. Кроме того, в данном процессе участвуют микроРНК (мкРНК) - класс малых некодирующих РНК длиной от 18 до 23 нуклеотидов, осуществляющих посттранскрипционную регуляцию экспрессии генов. мкРНК играют важную роль в регуляции множества процессов, включая развитие организма и дифференцировку клеток. В настоящее время обнаружено множество мкРНК, экспрессирующихся в плюрипотентных стволовых клетках человека, мыши и крысы. Наиболее изученные мкРНК, участвующие в процессе репрограммирования, относятся к кластерам miR-290-295, miR-302-367 и семейству miR-200 [2]. При этом участие многих других мкРНК в репрограммировании клеток, а также их функции остаются неизвестными. Ранее нами был проведен анализ экспрессии мкРНК в эмбриональных стволовых клетках (ЭСК), ИПСК и эмбриональных фибробластах крысы. В результате на Х-хромосоме выявлен кластер мкРНК (начиная с miR-743a и до miR-465) с повышенным уровнем экспрессии в плюрипотентных клетках по сравнению с фибробластами [3]. Кроме того, экспрессия некоторых мкРНК данного кластера снижается в ходе спонтанной дифференцировки плюрипотентных клеток. Полученные данные позволили нам предположить, что эти мкРНК могут участвовать в процессах самообновления и поддержания плюрипотентного состояния стволовых клеток, а также в их репрограммировании. Для проверки участия данных мкРНК в процессе репрограммирования мы получили фибробласты крысы, несущие делецию участка генома, кодирующего изучаемые мкРНК. Делеция данного участка нарушает процесс репрограммирования к плюрипотентному состоянию, что свидетельствует в пользу участия этого кластера мкРНК либо некоторых его представителей в регуляции этого процесса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Направляющие РНК, фланкирующие целевой участок с мкРНК, подбирали с использованием онлайн платформы Benchling (https://benchling. com/crispr). В итоге выбраны следующие протоспейсеры: 5'-СТТАGTTAACAGATTAGGAC-3' (PAM-TGG), 5'-ТТGCTAGAGTAATACCAACT-3' (PAM-TGG). Олигонуклеотиды встраивали в вектор pX-458-2sgRNA по сайтам BbsI и BsaI. Вектор pX-458-2sgRNA получен путем гидролиза эндонуклеазами рестрикции XbaI и KpnI вектора pX333 (Addgene Plasmid #64073), выделения и очистки фрагмента размером 444 п.н. и встройке данного фрагмента в вектор pSpCas9(BB)-2A-GFP (PX458) (Addgene Plasmid #48138), гидролизованный XbaI и KpnI.

Фибробласты крысы культивировали при 37°С и 5% CO, в смеси сред DMEM и F12 (1 : 1) (Lonza) с добавлением 10% эмбриональной бычьей сыворотки (Gibco, CША), GlutaMAX (Gibco), смеси 100 ед./мл пенициллина и 100 мкг/мл стрептомицина (Gibco). Для получения делеции фибробласты (4 × 10⁵) самцов крысы электропорировали плазмидой рХ-458-2sgRNA (5 мкг) с клонированными направляющими РНК с помощью прибора Neon Transfection System (Invitrogen, США). На следующий день клетки сортировали на приборе S3e Cell Sorter (Bio-Rad, CIIIA) и субклонировали в 96-луночные планшеты. Через 7-14 дней лунки просматривали под микроскопом и отбраковывали содержащие несколько островков роста, чтобы исключить поликлональные линии. Моноклональные линии размножали, выделяли ДНК и анализировали с помощью ПЦР и секвенирования по Сэнгеру. Последовательности праймеров приведены в табл. 1.

Для репрограммирования фибробласты (5 \times 10⁴) трансдуцировали двумя препаратами лентивирусов, кодирующих факторы плюрипотентности Oct4, Sox2, Klf4, с-Мус и тетрациклиновый трансактиватор. За 1 ч до трансдукции в среду добавляли 4 мкг/мл полибрена (Sigma-Aldrich, CША). Препараты лентивирусов получали с использованием векторов TetO-FUW-OSKM (Addgene Plasmid #20321) и FUdeltaGW-rtTA (Addgene Plasmid #19780) и векторов, кодирующих белки, необходимые для упаковки вирусных частиц, psPAX2 (Addgene Plasmid #12260) и pMD2.G (Addgene Plasmid #12259), по протоколу, описанному ранее [4]. На следующие сутки после трансдукции в среду добавляли 2 мкг/мл доксициклина (Sigma-Aldrich), на четвертые сутки фибробласты пересаживали на слой митотически неактивных эмбриональных фибробластов мыши и культивировали в среде N2B27, состоящей из смеси N2 (DMEM/F12 с добавкой N2) (Gibco) и B27 (Neurobasal с добавкой B27) (Gibco),

Таблица 1. Последовательности праймеров для ПЦРанализа линий клеток с делецией целевого локуса

Праймер	Последовательность, 5'-3'
FL1	CATACCTCAGAAACGCAAAAC
FL2	AGTTAATATCGAAAAGCCACC
IN1	CAGAATATATGGCTTATTGGA
IN2	GTTTTATACATACGCACACC
IN3	TATAAGAATGAAAGACGCCAAAC

а также GlutaMAX, смеси 100 ед./мл пенициллина и 100 мкг/мл стрептомицина, 0.1 мМ 2-меркаптоэтанола (Sigma-Aldrich), 1000 ед./мл LIF мыши (StemRD), 1 мкМ PD0325901 (StemRD) и 3 мкМ CHIR99021 (StemRD). Репрограммирование проводили в трех повторностях. На 10–14 день репрограммирования некоторые колонии частично механически пересаживали на отдельные ячейки для размножения и дальнейшего анализа, на 20 день окрашивали на щелочную фосфатазу (ЩФ) по протоколу, описанному ранее [4].

Иммунофлуоресцентное окрашивание осуществляли как описано ранее [4]. Для анализа использовали следующие первичные антитела: SSEA1 (sc-21702, 1:25), Oct4 (sc-5279, 1:200) и Sox2 (sc-20088, 1:200) (Santa Cruz Biotechnology, США). Для визуализации использовали вторичные антитела к иммуноглобулинам кролика или мыши, конъюгированные с флуоресцентными красителями Alexa 488 и Alexa 568 (Life Technologies, США).

РНК выделяли с использованием реагента TRIzol (Invitrogen) по протоколу производителя. Реакцию обратной транскрипции проводили с использованием 500 нг РНК, обратной транскриптазы M-MLV (Invitrogen) и Random Hexamer primers (Thermo Scientific, США). Полученную кДНК анализировали на приборе LightCycler480 (Roche, Швейцария) с использованием набора БиоМастер HS-qPCR SYBR Blue («Биолабмикс», Россия). Реакцию амплификации проводили при следующих условиях: 95°C, 5 мин; 40 циклов – 95°C, 15 с и 60°C, 1 мин. Последовательности праймеров приведены в *табл.* 2.

Поиск потенциальных мишеней проводили с использованием программ TargetSpy v1.1 [5], miRanda v3.3a [6] и TargetScan v7.0 [7]. Выбирали только гены-мишени, предсказанные всеми тремя программами и имеющие пониженный уровень экспрессии в ЭСК и ИПСК крысы по сравнению с фибробластами. Данные об экспрессии мРНК получены ранее [8].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследованный нами кластер мкРНК локализуется в участке 37 длинного плеча X-хромосомы и состоит из 14 мкРНК: miR-743a, miR-743b, miR-742, miR-883, miR-471, miR-3551, miR-741, miR-463, miR-880, miR-878, miR-881, miR-871, miR-3580, miR-465 (*puc. 1A*). Гипотезу об участии данного кластера мкРНК в процессе репрограммирования к плюрипотентному состоянию мы проверяли с использованием нокаута этих мкРНК путем делеции участка генома, их кодирующего. Делецию получали с помощью системы CRISPR/Cas9 с двумя направляющими РНК, фланкирующими делетируемый участок. В результате получены 94 субклонированные линии фиброблаТаблица 2. Последовательности праймеров для анализа экспрессии маркеров плюрипотентного состояния

Ген	Последовательность, 5'-3'
endo-Oct4	CACACTCTACTCGGTCCCTT TGCTTTCAATTCCTCCCCA
endo-Sox2	TATCGAGATAAACATGGCAA CAGAATCAAAACCCAGCAA
endo-Klf4	TCCGATCTACATTTATGACC TTATTGCACATCTGAAACCAC
endo-c- Myc	TCAAAGCCTAACCTCACAA GCAGTTAACATTATGGCTGA
Nanog	TACCTCAGCCTCCAGCAGAT GCAATGGATGCTGGGATACT
Esrrb	GGCGTTCTTCAAGAGAACCA CCCACTTTGAGGCATTTCAT
Tdgf1	TTGGACTTGTTGCTGGGATA CGGAAGGCACAAGCTGGA
Tcl1a	CCGATTAAATATCTCACTCAC TCTCTTATTTCTTGGCATCT
Utf1	TTGCTCCCCAGTCTCTGAAT GAGAAACGGTTTGGTCGAAG
Dnmt3l	AAGACCCATGAAACCTTGAACC GTTGACTTCGTACCTGATGACC
Pecam1	TCCTAAGAGCAAAGAGCAAC TGGGCTTGTCTGTGAATGT
Dppa3	TGGGGAAATCTCTTCTAATTGCT CTTCTAAATCAAACTACCAGGCTT

стов самцов крысы, из которых семь несли делецию целевого участка ДНК (*puc. 1Б*). Наличие делеции в субклонированных линиях проверяли методом ПЦР с использованием фланкирующих праймеров. Кроме того, проверяли присутствие транслокации делетируемого участка с использованием вложенных праймеров (*puc. 1B*). В некоторых линиях наличие делеции подтверждали секвенированием по Сэнгеру (*puc. 1Г*).

Экспрессию экзогенных факторов плюрипотентности активировали параллельно в линиях фибробластов с делецией кластера мкРНК и в контрольной линии клеток, которую, во-первых, использовали для получения линий с нокаутом, а, во-вторых, электропорировали плазмидой pX-458-2sgRNA, не кодирующей направляющие РНК. Эффективность репрограммирования фибробластов с нокаутом мкРНК оказалась значимо ниже по сравнению с контрольной линией (puc. 2A). В ходе репрограммирования некоторые колонии как из контрольных, так и из экспериментальных лунок механически частично пересаживали для дальнейшего анализа. Морфология клеток, полученных в контрольном эксперименте, соответствует морфологии ЭСК крысы. Данные ИПСК-подобные клетки успешно культивируются, сохраняют морфологию и положительно окрашива-

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

следуемого кластера мкРНК. Горизонтальными стрелками обозначены праймеры, вертикальными – сайты внесения двухцепочечных разрывов. Б – результаты выявления делеции в субклонированных линиях. Использованы праймеры FL1 и FL2. В — анализ поликлональности субклонированных линий (слева) и наличия транслокации (справа) с использованием пар праймеров FL1–IN3 и IN1–IN2 соответственно. к+ и к- – положительный и отрицательный контроли ПЦР. Г – примеры секвенирования по Сэнгеру ПЦРпродуктов, полученных с праймеров FL1 и FL2, при наличии делеции целевого участка. ДТ дикий тип

ются на ЩФ после отмены экспрессии экзогенных факторов плюрипотентности (рис. 2Б). Они экспрессируют маркеры плюрипотентного состояния, что подтверждается иммунофлуоресцентным окрашиванием и ОТ-ПЦР в реальном времени (*puc.* 2B, Γ).

Клетки, полученные при репрограммировании фибробластов с нокаутом кластера мкРНК miR-743а-miR-465, имеют эпителиальную морфологию, что говорит о прохождении начального этапа репрограммирования - мезенхимально-эпителиального перехода. Однако эти клетки в отличие от контрольной линии образуют неплотные колонии. Процесс репрограммирования происходит не полностью, клетки гибнут в отсутствие доксициклина, что свидетельствует о зависимости от экспрессии экзогенных факторов плюрипотентности. Стоит отметить, что клетки с нокаутом кластера miR-743a-miR-465 положительно окрашиваются на ЩФ и SSEA1, подтверждая прохождение начальных этапов репрограммирования плюрипотентности (рис. 2Б,В). В этих

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Рис. 2. А – эффективность репрограммирования линий фибробластов – контрольной и с нокаутом. Звездочкой обозначены статистически значимые отличия, **p*<0.05, критерий Манна–Уитни. *Б* – репрезентативные изображения колоний, полученных в результате репрограммирования, а также ЭСК крысы. Фазовый контраст сверху, окраска на ЩФ снизу. *В* – иммунофлуоресцентное окрашивание колоний, полученных в результате репрограммирования. Масштаб 100 мкм. *Г* – ОТ-ПЦР-анализ экспрессии маркеров плюрипотентного состояния. Звездоч-ками обозначены статистически значимые отличия экспрессии генов в клетках с нокаутом по сравнению с контролем, **p*<0.05, ***p*<0.005, *t*-критерий Стьюдента

клетках наблюдается также экспрессия маркеров плюрипотентности, но ее уровень значительно ниже, чем в контрольной группе клеток (*puc. 2Г*).

В число мишеней исследуемых мкРНК входят гены сигнального пути TGF-β, ингибирование которого способствует репрограммированию [9]. Значительную долю составляют гены сигнального пути Wnt, ингибирование которого на ранних стадиях необходимо для успешного репрограммирования клеток [10]. Присутствуют также известные ингибиторы процесса репрограммирования Cdkn1a и Zeb1 [11, 12].

мкРНК играют важную роль в регуляции множества процессов, в том числе и в репрограммировании клеток к плюрипотентному состоянию. В настоящее время изучена лишь малая часть мкРНК, экспрессирующихся в плюрипотентных клетках и вовлеченных в процесс репрограммирования. Появление систем редактирования генома значительно ускорило прогресс в изучении функций как белоккодирующих генов, так и некодирующих РНК. В отличие от ингибиторов мкРНК, основанных, например, на LNAолигонуклеотидах, система CRISPR/Cas9 позволяет добиться более специфичного и постоянного нокаута мкРНК. Кроме того, использование CRISPR/Cas9 делает возможным нокаут целого кластера мкРНК.

Исследованный кластер мкРНК расположен вблизи белоккодирующего гена Slitrk2. Схожие кластеры мкРНК обнаружены у других видов млекопитающих, в том числе у мыши и человека [13]. Предполагается, что у разных видов эти кластеры мкРНК имеют общего предка, но значительные различия в последовательностях пре-мкРНК и seed-регионов свидетельствуют о быстрой эволюции этих мкРНК [13, 14]. Высокий уровень экспрессии данных кластеров мкРНК выявлен в семенниках мыши и человека, а их участие в регуляции сперматогенеза у мышей показано путем делеции некоторых из них [13-15]. Функционально подтверждено существование общих генов-мишеней у данных мкРНК мыши и человека, несмотря на различия в их нуклеотидных последовательностях [14]. Стоит также отметить, что мкРНК данного кластера способны функционально компенсировать взаимное отсутствие [13]. В отличие от мыши, уровень экспрессии некоторых мкРНК у крысы, в частности mir-741, сравним в семенниках и плюрипотентных клетках, что может свидетельствовать о видоспецифичных особенностях плюрипотентных клеток крысы [3, 15]. Тем не менее, в огромном пуле потенциальных генов-мишеней могут быть

СПИСОК ЛИТЕРАТУРЫ

- 1. Takahashi K., Yamanaka S. // Cell. 2006. V. 126. № 4. P. 663–676.
- Greve T.S., Judson R.L., Blelloch R. // Annu. Rev. Cell Dev. Biol. 2013. V. 29. P. 213–239.
- 3. Sherstyuk V.V., Medvedev S.P., Elisaphenko E.A., Vaskova E.A., Ri M.T., Vyatkin Y.V., Saik O.V., Shtokalo D.N., Pokushalov E.A., Zakian S.M. // Sci. Rep. 2017. V. 7. № 1. P. 2787.
- 4. Grigor'eva E.V., Shevchenko A.I., Medvedev S.P., Mazurok N.A., Zhelezova A.I., Zakian S.M. // Acta Naturae. 2015. V. 7. № 4. P. 56–69.
- 5. Sturm M., Hackenberg M., Langenberger D., Frishman D. // BMC Bioinformatics. 2010. V. 11. P. 292.
- Betel D., Wilson M., Gabow A., Marks D.S., Sander C. // Nucl. Acids Res. 2008. V. 36. Database issue. P. D149–153.
- 7. Agarwal V., Bell G.W., Nam J.W., Bartel D.P. // Elife. 2015. V. 4. e05005.
- 8. Vaskova E.A., Medvedev S.P., Sorokina A.E., Nemudryy A.A., Elisaphenko E.A., Zakharova I.S., Shevchenko A.I., Kizilova

представлены общие гены, участвующие в процессе репрограммирования у разных видов. Таким образом, этот кластер мкРНК может принимать участие в репрограммировании не только клеток крысы, но это требует дальнейшего изучения.

Нарушение процесса репрограммирования при делеции участка ДНК, содержащего кластер из 14 мкРНК (с miR-743a по miR-465), позволяет предположить вовлеченность всех или некоторых из них в данный процесс. Стоит отметить, что делеция такого значительного по размеру района могла затронуть либо неизвестные регуляторные элементы, либо неаннотированные гены. Тем не менее, наше исследование можно рассматривать как первый шаг в изучении данного кластера мкРНК в процессе репрограммирования клеток к плюрипотентному состоянию.

Авторы признательны Е.В. Григорьевой за помощь в проведении экспериментов по репрограммированию клеток крысы, А.А. Малаховой за помощь в сортировке клеток. Также авторы благодарны Андреа Вентура (Andrea Ventura), Фенгу Жангу (Feng Zhang), Рудольфу Джанишу (Rudolf Jaenisch), Конраду Хочедлингеру (Konrad Hochedlinger) и Дидье Троно (Didier Trono) за плазмиды, размещенные в депозитарии Addgene.

Работа поддержана грантом РНФ № 16-14-10084.

E.A., Zhelezova A.I., Evshin I.S., et al. // Stem Cells Dev. 2015. V. 24. \mathbb{N}_{2} 24. P. 2912–2924.

- 9. Ichida J.K., Blanchard J., Lam K., Son E.Y., Chung J.E., Egli D., Loh K.M., Carter A.C., Di Giorgio F.P., Koszka K., et al. // Cell Stem Cell. 2009. V. 5. № 5. P. 491–503.
- 10. Aulicino F., Theka I., Ombrato L., Lluis F., Cosma M.P. // Stem Cell Reports. 2014. V. 2. № 5. P. 707–720.
- 11. Brosh R., Assia-Alroy Y., Molchadsky A., Bornstein C., Dekel E., Madar S., Shetzer Y., Rivlin N., Goldfinger N., Sarig R., et al. // Cell Death Differ. 2013. V. 20. № 2. P. 312–320.
- 12. Samavarchi-Tehrani P., Golipour A., David L., Sung H.K., Beyer T.A, Datti A., Woltjen K., Nagy A., Wrana J.L. // Cell Stem Cell. 2010. V. 7. № 1. P. 64–77.
- 13. Zhang F., Zhang Y., Lv X., Xu B., Zhang H., Yan J., Li H., Wu L. // Mol. Biol. Evol. 2019. V. 36. № 4. P. 663–678.
- 14. Ramaiah M., Tan K., Plank T.M., Song H.W., Dumdie J.N., Jones S., Shum E.Y., Sheridan S.D., Peterson K.J., Gromoll J., et al. // EMBO Rep. 2019. V. 20. № 2. P. e46566.
- 15. Ota H., Ito-Matsuoka Y., Matsui Y. // PLoS One. 2019. V. 14. № 2. P. e0211739.