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Abstract  This report is a detailed review of the current data on mechanic and gravitational sensitivity of osteoblasts 
and osteogenic precursor cells in vitro. It summarizes the numerous responses of cells with an osteoblastic phenotype 
and osteogenic precursor cells and especially their responses to the alteration of their mechanic or gravitational sur-
roundings. The review also discusses  the osteogenic cell’s pathways of signal transduction and the mechanisms of 
gravitational sensitivity. It was shown, that the earliest multipotent stromal precursor cells of an adult organism’s 
bone marrow can sense changes of intensity in a gravitational or mechanic field in model conditions, which may play 
a certain role in the development of osteopenia in microgravity. 
Keywords osteopenia, gravitational sensitivity of cells, microgravity, osteoblasts, osteogenic precursor cells, multipo-
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During the evolution, the skeletal system of land verte-
brates adapted itself to an environment, in which one 
of the most prominent and constant factors is gravity. 

This factor has determined the morphogenesis and structure 
of all land animals. Certain elements of the skeleton have 
evolved for maintaining posture and achieving active locomo-
tion, and thus are constantly experiencing static and dynamic 
strain as a result of “defying the gravitational force”. Since 
humans have started exploring the outer space, the effect of 
microgravity on the skeletal system became an important is-
sue, as a lack of mechanic stress (microgravity, hypokinesia, 
hypodynamia, immobilization) can lead to the loss of bone 
mass caused by insufficient mechanic impulses and gravity-
induced deformations, which are not capable to support the 
integrity skeletal remodeling processes [1, 2].

Studies conducted in the last decade have conclusively 
demonstrated that cultured cells of osteoblast phenotype are 
sensitive to microgravity [3–8]. However, one question re-
mains unanswered: How can microgravity affect the numer-
ous functional aspects of less mature cell forms, namely the 
progenitor cells.

During post-natal development the main source of precur-
sor cells is the bone marrow, which is closely connected with 
bone tissue both in formation and in functioning. Among the 
numerous components of the bone marrow stroma, there is 
a minor population of cells, which is localized in the perivas-
cular region of the marrow, but differs from endothelial or 
smooth muscle cell populations by the expression of several 
surface antigens and by the cell’s ability to differentiate into 
tissue cells of mesenchymal origin. So these cells posses all 
the characterstics of multipotent mesenchymal stem/stromal 
cells (MMSC) [9, 10]. MMSC were first isolated from animal 
bone marrow in the 70’s of the 20th century by A.Y. Frieden-

stein and his collegues. Later MMSC were found and ex-
tracted from human bone marrow. A large number of studies 
showed that in vitro MMSC can differentiate into the cellular 
elements of bone, cartilage and fatty tissues, as well as sup-
port and regulate hematopoiesis [11–13]. It is well known that 
osteoblasts of different stage of maturity have a different de-
gree of gravitational sense [14, 15], however the mechanisms 
of gravitational sensitivity of less committed cells of the bone 
tissue have only recently started to be elucidated. 

Possible mechanisms of the gravity 
effect on the cellular level
Comparison of the results obtained in in vitro experiments, 
with the changes that take place in a human organism un-
der the influence of microgravity provides an opportunity 
to differentiate and establish the role of cellular reactions in 
forming physiological responses, since it allows to factor out 
the effects of the integral regulating systems of the human 
organism. The development of the views on cellular gravi-
tational sensitivity per se can be seen in a series of reports 
[16–20]. Discussions of whether an in vitro single cell or a 
cell population can sense changes in the gravitational field 
are still very heated. Despite this, an enormous body of ex-
perimental data undoubtedly indicates that several types of 
cultured cells are sensitive to gravity. In particular, it was 
demonstrated that microgravity cause multiple and often re-
versible morpho-functional alterations including remodeling 
of the cytoskeleton, change of gene expression and a mosaic 
rearrangement of the intracellular regulatory machinery. 
These alterations are reviewed in detail in [5, 19, 21, 22].

It seems that undifferentiated mammalian cells do indeed 
have structural elements that may play the role of «gravita-
tional sensor» and «sense» the intensity of a mechanical ten-
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sion, and that many intracellular processes can depend on 
the value of the gravitational force. The most probable can-
didates for the role of these structures are various elements 
of the cytoskeleton, the nucleus, intracellular organelles and 
also certain cell surface receptors (integrins), which interact 
both with  cytoskeletal structures and extracellular matrix. 
These structures are able to sense strains and deformations 
in the matrix which are caused either by a gravitational or 
mechanical field, and transfer this signal to intracellular mes-
sengers, which then cause a cellular response to the gravity 
changes [18, 23, 24]. Based on several theoretical considera-
tions and practical observations, it is supposed that the gravi-
tational sensitivity of the cells which grow on a surface is a 
function dependant on two variable parameters: The level of 
cell adhesion to the substrate and the strength of the intercel-
lular interactions, while the realization of these interactions 
is in direct proportion to the amount of invested energy [17]. 
The indirect effect of microgravity at the cellular level can 
manifest itself in changes of the physico-chemical param-
eters of the medium, especially the processes of convection, 
sedimentation and also concentration gradients, which are 
all gravity-dependant and can thus be altered in micrograv-
ity [20, 25].

Mechanic and gravitational sensitivity of 
various types of bone tissue cells: effects 
on the proliferative potential of cells
For a long time, osteocytes and the mature inactive osteob-
lasts were widely accepted to be the most likely candidates 
for a mechanosensor in the bone tissue [14, 15]. It was sup-
posed that this process was performed via cell-cell junctions, 
formed by integrins, which interact with elements of the ac-
tin cytoskeleton (actin, vinculin, etc.) inside the cell and with 
various proteins of the bone matrix outside the cell, thus 
forming a continuous network which encompasses osteocytes 
and the bone matrix. It was thought that this ever present 
and all-encompassing structure could sense and potentiate 
the effect of even miniscule mechanical stimuli [26].

It was demonstrated on bone cell cultures that certain 
types of mechanic stimulation, such as pulsatile fluid flow or 
mechanic strain, can trigger a cascade of regulatory reactions. 
The latter included a transient increase in the production of 
low molecular weight messengers, such as NO, expression of 
the inducible prostaglandin synthase (Cox-2) and secretion 
of porstaglandins (PGE

2
, PGI

2
), which were involved in the 

increase of the intracellular calcium concentration, in the ac-
tivation of the inositol-3-phosphate signal cascade [27], and in 
increasing cAMP and IGF-I levels, activation of proliferative 
and differentiation processes in bone cells [15], and activation 
of cytoskeletal remodeling [28]. Nevertheless, effects from 
different types of mechanic stimulation are not identical [29, 
30], and cells at different stages of maturity can react to the 
same mechanical stimulus either in the same manner [28], or 
differently [14, 15]. Such selectiveness and variability of the 
bone cell responses towards various types of stimuli seems to 
be caused by the unalike distribution of differentiating and 
mature cells within in situ bone tissue, as well as  by the dif-
ferences in their maturity and their functions. 

It is well known that the proliferative activity of osteo-
blasts is controlled by a wide range of bioactive compounds, 

as well as by mechanical signals. In particular, it was shown 
that Cox-2 expression and PGE

2
 production increase in osteo-

blasts in response to the growth factor TGF-β and that this 
effect is required for the transition between the G1-phase 
and the S-phase, DNA replication and active proliferation 
[5]. Notably, different types of mechanic stiumuli, as well 
as hypergravity [31], can increase PGE

2
 production, which 

implicates PGE
2 

in the anabolic effects of mechanical stress. 
Surprisingly, the studies conducted in microgravity detected 
both an increase in PGE

2
 production, and also a decrease of 

Cox-2 mRNA levels and PGE
2
 production in conjunction with 

an overall decrease of cell growth under microgravity [5]. The 
latter effect was accompanied by alterations in the structure 
of the actin cytoskeleton.

Studies that analyze the effect of mechanical stress on pro-
genitor cells are of special interest. It was determined that 
human MMSC express both Cox-1, and Cox-2, and produce 
PGE

2
 at a higher level than osteoblast-like cells derived from 

them. It was also found that the increased production of this 
metabolite in MMSC was associated with an increase in the 
expression of a membrane-bound prostaglandin-synthase. 
Also endogenous MMSC PGE

2
 production controls the syn-

thesis of the osteogenic growth factor BMP-2 [32]. It seems 
that MMSC, as well as mature osteoblasts and osteocytes, can 
be thought of as mechanosensory bone tissue cells, since ani-
sotropic single axis mechanic deformation of MMSC cultured 
on special elastic membranes causes overall changes in the 
gene expression pattern, lowers the activity of certain sig-
nal transduction pathways (Jagged1) and activates cell pro-
liferation [33]. Thus, the view that has dominated for some 
time now, that bone tissue cells with low-level differentiation 
cannot or can hardly sense mechanic stimuli, must obviously 
be corrected. It is worth noting, that the data which show 
changes in the proliferative activity of cells with osteoblastic 
phenotype under altered gravity are fairly controversial. In-
hibition of osteoblast cell proliferation has been shown both in 
microgravity and in experiments that modeled these condi-
tions [6, 34, 35]. On the other hand, the use Random Position-
ing Machine (RPM) did not inhibit 2T3 mouse preosteoblast 
growth [36]. The proliferative activity of MMSC during osteo-
genic differentiation did not change in a rotational bioreactor 
[37], decreased after incubation in a clinostat [38] and actually 
even increased after cultivation in a 3D-clinostat [39].

It seems that the most probable effect of microgravity on 
the osteogenic precursor cells is a change in the normal cell 
response to the anabolic influence of growth factors. Cur-
rently many researchers are of the opinion that the observed 
cell reactions are not caused by physical loss of growth fac-
tor receptors (for instance EGF, PDGF), but more likely by 
a change in the signal transduction system caused by micro-
gravity [5, 40]. This opinion has led scientists into thorough 
research of candidate intracellular mechanisms and signaling 
pathways. According to modern views, the major routes of 
all three main directions of MMSC differentiation include the 
activation/repression of MAP-kinase cascades (mitogen-ac-
tivated proteinkinases) [41]. It was demonstrated that the ac-
tivation of the well-known MAP-kinase cascade (ERK1/2) is 
mainly achieved through a Ras-dependant signaling pathway 
which is activated in response to binding of growth factors 
with their receptors [41]. It is supposed that growth factors 
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such as BMP-2 and IGF-I, cause their positive mitotic effect 
on MMSC via the activation of the MAP-kinase cascade. This 
process also includes proteinkinase D, but not protein kinase 
С [42]. Notably, the increase in MMSC proliferation observed 
under the effect of pulsatile fluid flow is also realized through 
the calcium signaling system and the MAP-kinase cascade, 
which indicates the existence of a general mechanism for 
transforming mechanical signals into biochemical ones in os-
teogenic precursor cell of varying degrees of maturity [43].

The role of adhesion receptors in regulating 
precursor cell functions and in sensing 
mechanical and gravitational stimuli.
The question of whether the immunophenotype of precur-
sor cells remains intact under conditions of altered gravity 
may be of much importance for several reasons. First, the 
main CD-clusters, which are expressed on the MMSC mem-
brane, regulate various aspects of precursor cell functioning. 
Since they are surface receptors for growth factors and thus 
mediate the interactions between MMSC and hemopoetic 
precursors and lymphocytes, they modulate the maturation 
and activity of the latter and take part in the interaction of 
cells with molecules of the extracellular matrix [11, 13, 44]. 
Second, the role of some antigens in the realization of unique 
stem cell differentiation potentials is still unknown. Instanc-
es of the effect of model microgravity on the expression of 
specific MMSC surface markers are rare and controversial. 
Specifically, one study determined that a 7-day incubation 
in a 3D-сlinostat caused an increase of the population ratio of 
human MMSC cells expressing stromal cell antigens CD44+, 
CD90+, CD29+ [39]. Another study showed that a 6-day incu-
bation in a horizontal сlinostat decreased the number of cells 
bearing the CD105 and HLA A,B,C antigens in a culture of 
human bone marrow MMSC [45]. Our own studies show that 
a 5-day incubation of MMSC on a RPM causes an increase in 
the number of cells expressing integrin CD49b, but does not 
affect the percentage of cells, expressing CD29 [46]. 

Perhaps the most interesting aspect of the biological pecu-
liarities related to osteogenic precursor cell immunophenotype 
is the potential role of certain antigens in the mechanisms of 
mechanic and gravitational sensitivity. The mechanochemical 
hypothesis proposes that integrins and other receptors on the 
cell surface play an important role in the physical interaction 
between the extracellular matrix and the cytoskeleton and in 
sensing gravitational signals [23, 24]. A complex study, which 
looked into the molecular functions of integrins, demonstrat-
ed that simple clusterization of integrins on the cell surface 
in response to signals from the extracellular matrix triggers 
the transmembrane activation of 20 major mediators of signal 
transduction including cytoskeleton effector proteins RhoA, 
Rac, Ras, Raf, and MAP-kinases MEK, ERK and JNK. Nota-
bly, the use of cytochalasin D and tyrosine kinase inhibitors 
did not abolish the aggregation of integrins with FAK and 
cytoskeleton proteins (vinculin, talin and α-actinin) [47]. 

The potential role of several mentioned antigens in the 
response of bone cells to a rapid decrease in the mechanical 
stress level is very intriguing. Proof of the fact that integrins 
(namely, β1-integrin or CD29) play a role in osteoblast me-
chanical signal sensitivity was obtained in a study conducted 
on mice, which expressed β1-integrin in the normal amount, 

and transgenic animals, which had a dominant negative β1-
integrin gene introduced into their genome. Adult mice at 2 
months of age exhibitied an osteopenic phenotype, displayed 
a characteristic decrease in the bone tissue mass of the hind 
limbs, and also decreased durability and robustness of the tis-
sue, despite a normal level of bone remodeling [48]. Another 
study showed activated expression of the alpha2-integrin 
during the course of MMSC differentiation in conditions of 
simulated microgravity [49]. Recent studies in mechanobi-
ology focus not only on integrins, but on other receptors of 
cell adhesion as well, especially CD44 (HCAM). A study on a 
MC3T3–E1 osteoblast culture showed that mechanic stress 
caused by pulsatile fluid flow led to an increase in the level of 
osteopontin mRNA. This protein is a major component of the 
bone tissue matrix and is a ligand of CD44 [50]. Mice lacking 
the OPN gene exhibit resistance to unloading by tail-suspen-
sion and loose less bone tissue mass than the wild-type mice. 
Bone marrow MMSC form suspended OPN-negative mice, 
cultivated ex vivo, are characterized by normal ability to form 
mineralized nodules, as compared to decreased mineralization 
in cultures extracted from wild-type mice after they were 
suspended [51]. In connection with this, it is interesting that a 
5-day incubation of rat osteoblasts under microgravity led to 
a decrease in osteopontin expression levels, but increased the 
expression of CD44, while the expression level of β1-integrin 
(CD29) remained constant [7].

It is known that CD44 plays a role in binding and regulat-
ing matrix metalloproteinases (MPPs) [52]. MMSC express 
and produce various types of MPPs (- 2, 3, 10, 11, 13, 14), and 
mechanical stress causes increased activity of these enzymes, 
and of collagenase (MPP-13) in particular, and interestingly, 
this increase takes place on the post-translational level [53]. 
These studies demonstrate, that a change in the specific bal-
ance of collagenase activity level or expression can play a dis-
tinct role in the mechanisms of collagen matrix maturation 
and destruction, including changes caused by alterations in 
the mechanic field parameters. 

Mechanic and gravitational sensitivity in 
different types of bone tissue cells: effects 
on osteogenic cell differentiation. 
Studies that focus on the various parameters of collagen bio-
synthesis of the so-called mechanocytes (fore mostly fibrob-
lasts and bone cells) under conditions of elevated or decreased 
gravity are of especial interest. Hypergravity usually results in 
increased type I collagen biosynthesis [54], while microgravity 
or their modeling suppress the expression of this protein [4, 55]. 
Our study found that MMSC, which were committed to osteo-
genesis simultaneously with the transfer of cells into simulated 
microgravity, displayed a decrease in the production rate of 
extracellular collagen matrix (type I collagen) [56]. 

A correlation has been found between the level of collagen 
synthesis and the activation of MAPK-family kinases, and 
ERK1/2 in particular, since inhibition of this signaling path-
way caused decreased gene expression levels and decreased 
protein production levels of one of the chains of type I col-
lagen [54]. MMSC cells committed to osteogenesis displayed 
a complete lack of type I collagen expression coupled with 
changes in the expression levels of integrins, specific to col-
lagen, after 7 days of cultivation in a rotational bioreactor. 
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They also exhibited decreased levels of ERK1/2MAPK phos-
phorylation, as opposed to p38MAPK phosphorylation levels, 
which were elevated [37, 49]. 

It was shown that during the course of induced osteogen-
esis in normal cells of osteoblastic phenotype the activation of 
type I collagen expression begin after 5-6 days of cell cultiva-
tion osteogenic medium, and the peak of protein expression 
was usually reached on days 9-14, which was the end of the 
proliferative phase and the beginning of the so-called ma-
trix maturation period [57]. This indicated that a short-term 
exposure of cells to microgravity did not necessarily cause 
expression inhibition for relatively “late” phenotypic genes, 
such as collagen. This also probably means that the expres-
sion of any “mechanically sensitive” osteoblast protein prod-
uct is most vulnerable to changes in the gravitational field at 
the peak of its expression, which is tightly connected with 
three distinct differentiation phases in cells of osteoblastic 
phenotype (Fig. 1).

Another important aspect of  the effects of microgravity on 
osteogenic cell differentiation is the decrease of expression and 
activity levels of the alkaline phosphatase (APL), and the ex-
pression inhibition of the late mineralized bone matrix marker 
proteins, such as osteopontin and osteocalcin, which indicate 
slowing effects on both the early and the late phases of osteo-
genic precursor cells’ differentiation into osteoblasts  [4, 36, 37, 
49, 55, 58]. APL definitely plays a role in the mineralization of 
the bone matrix in bone tissue, nevertheless, it is still unclear 
how this mechanism functions and the precise function of the 
enzyme remains an issue for discussion [59]. It is not always 
possible to see a direct correlation between the activity of this 
enzyme and certain observed physiological effects, which in-
dicates that other pathways of mineralized matrix formation 

may exist. One study, in particular, demonstrates that the me-
chanic stimulation of osteoblasts by pulsatile fluid flow causes 
an increase in the cellular activity of  APL, although it is not 
accompanied by an increase of matrix mineralization in the 
culture [60]. One possible explanation might be provided by 
the recently proposed hypothesis stating that the cells of the 
osteocyte lineage play a role in the formation of a stable mor-
phologically structured bone matrix. The authors propose that 
depending on external factors bone cells regulate the forma-
tion, maturation and rate of crystallization of amorphous phos-
phate-calcium mineralization nuclei via non-collagenous pro-
teins of the bone tissue (osteonectin, osteopontin, osteocalcin 
and bone sialoprotein) [61]. Interestingly, lowered expression of 
osteocalcin in cells under micrigravity is often accompanied by 
lowered expression of a key transcription factor, which regu-
lates osteogenic differentiation of osteogenic cells. This factor 
is Runx2 (runt-related transcription factor 2), and it may will 
be one of the primary “targets” of microgravitational effects 
on the osteoblastic phenotype. 

The role of Runx2 in the regulation of 
osteogenic differentiation of MMSC and 
osteoblasts and its potential role as the 
main “target” of altered gravity effects
Runx2/PEBP2aA/Cbfa1, the main regulator of mesenchymal 
cell osteogenic differentiation, which can respond to the ef-
fect of osteogenic growth factors, was first identified in the 
course of studies connected with osteogenic differentiation of 
pluripotent mesenchymal precursor-cells of the C2C12 mouse 
line [62]. Full-fledged osteoblast differentiation and expression 
of specific osteogenic genes requires the cooperation of Runx2 
and Smad molecules, which are activated by BMP-2. It was 

growth matrix maturation mineralization

proliferation differentiation

alkaline 
phosphatase, 
osteopontin, 
osteocalcin, 
collagen

days

с-fox, c-myc,
c-jun, cox-2,
H4 histones,
cyclins
alkaline phos-
phatase

Fig. 1. Relationships between growth and differentiation stages of osteoblasts. Early stages of osteogenic cell growth are regulated by early response 
genes c-fos, c-myc,  cox-2 and efr-1, as well as by transcription factors which are activated in the cells that have commenced their cell cycle. During 
the very late proliferation stage and early differentiation stage, alkaline phosphatase, collagen, and fibronectin are upregulated. In the middle of the 
matrix maturation stage, mineralization genes and alkaline phosphatase are activated. Adapted from [5]
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also discovered, that growth factor BMP-7 induced the expres-
sion of Runx2 mRNA earliear than osteocalcin expression, and 
furthermore, transfection by an isoform of Runx2 led to the 
osteogenic differentiation of non-osteogenic cells [63]. 

It is currently accepted that Runx2 is an essential, but not 
the only needed osteogenesis transcription factor. It cooper-
ates in the postnatal development of osteoblasts with other 
transcription factors (Osx, Msx, Smad, Dlx) and also plays a 
key role in the regulation of osteogenic differentiation of mes-
enchymal cells [64, 65]. Preosteoblasts which experience me-
chanical deformation, respond with rapid activation of BMP-
2, Runx2 и Smad5 expression, and this effect is later followed 
by increases of the expression of genes needed for the for-
mation and maturation of the matrix: ALP, COL1a1 and OC, 
OPN [66]. “Mechanically sensitive” genes were identified in 
osteoblasts under conditions of simulated microgravity, with 
Runx2 being one of them [67]. It was also demonstrated, that 
LMHF (low magnitude and high frequency mechanical load-
ing) of preosteoblasts could prevent the suppression of the 
osteogenic differentiation potential of cells under simulated 
microgravity. This was accompanied by restoration of the 
previously suppressed expression of Runx2 [68]. Notably, in 
vivo models also showed that deactivation or lowering the 
expression level of Runx2 were among the main mechanisms 
by which hypokinesia affected the osteoblastic phenotype. 
Partial Runx2 heterozygous knockout mice were particular-
ly sensitive to unloading, which provoked a more noticeable 
loss of bone tissue mass than in wild-type mice with a normal 
level of Runx2 expression [69]. 

The role of mechanical signals in determining 
the differentiation fate of mesenchymal 
stromal precursor cells: PPARγ2 versus Runx2 
The organism possess a highly surprising connection between 
osteogenesis and adipogenesis, which is preserved in the cul-
tured precursor cells as well. Probably, these unusual recip-
rocal interactions between the two differentiation lineages 
of MMSC are determined by shared signaling pathways and 
regulating mechanisms, which prioritize the development of 
one differentiation path at the expense the other one, basing 
this choice on the signals received by the cells. At least some 
of these mechanisms have recently been elucidated.

PPARγ2 is a key adipogenic transcription factor and it func-
tions as a negative dominant regulator of osteogenesis [70]. 
Specific activation of PPARγ2 by various natural and synthetic 
ligands leads to complete suppression of the main transcrip-
tion factors of osteogenesis,  cbfa1/Runx2 and Osterix, and 
also to increased conversion of bipotent mesenchymal precur-
sors into adipocytes, without affecting the morphofunctional 
condition of osteoblasts, which are in the terminal stages of 
differentiation [71]. Chronic injection of a PPARγ2 antagonist 
rosiglitazone leads to a loss of bone tissue mass in mice, which 
is accompanied by an increase in the number of adiopcytes in 
the murine bone tissue and a decrease in the osteoblast to os-
teoclast ratio [72,  73]. Interestingly, as MMSC age, the activity 
of PPARγ2 increases, which correlates with the decrease of the 
pool of osteoblasts and the elevation of adipocytes numbers in 
the bone marrow. The cells also experience lowered expression 
levels of Runx2 и Dlx5, and also decreased production of col-
lagen and osteocalcin [74].

Recently, the role of mechanical signals in determining 
and realizing various MMSC differentiation programs has 
been a highly discussed topic [75]. It was determined that 
mechanical stretching led to lowered PPARγ2 levels in a cul-
ture of bovine MMSC and in a C3H10T1/2 cell line [76]. It was 
also shown that mechanical stimuli led to elevated expres-
sion levels of Msx2, which activated osteogenic differentia-
tion of cells, showed a synergistic effect with BMP-2 and in-
hibited PPARγ2 thus acting as a suppressor of adipogenesis 
[77]. Transitory activation of the Wnt/β-Catenin signaling 
pathway inhibited adipogenic differentiation of cells by sup-
pressing C/EBPα and PPARγ2 expression and activating the 
expression of osteogenetic transcription factors Runx2, Dlx5 
and Osterix [78]. Other studies demonstrated the possibility 
of the Wnt/β-Catenin-signalling pathway being implicated 
in the inhibition of adipogenesis and stimulation of cell osteo-
genesis in response to mechanical deformation. This process 
was realized via estrogen α-receptors [79] and insensitive to 
the powerful adipogenesis inducers which were present in 
the cell culture media [80]. Interestingly, mouse osteoblasts 
subjected to simulated microgravity were found to have sup-
pressed levels of several components of the Wnt/β-Catenin-
signalling pathway, such as Sfrp2 and Wisp2, which may 
indicate, albeit indirectly, the activation of an adipogenic pro-
gram under microgravity [67]. It was also shown that MMSC 
extracted from the bone marrow of unloaded rats and cul-
tured ex vivo exhibited lowered levels of cbfa1/Runx2 ex-
pression during the activation of osteogenic differentiation. 
On the other hand, these cells demonstrated an increased 
expression of PPARγ2 during activation of adipogenic dif-
ferentiation and generally differentiated more easily into the 
adipogenic lineage [81]. Similar changes were seen after short 
incubations of MMSC in a rotational reactor, which models 
the effects of microgravity [37]. However, studies of induced 
adipogenic differentiation of MMSC under prolonged incuba-
tions in simulated microgravity did not yield any phenotypic 
signs of increased adipogenesis in MMSC [56].

Microgravity can modify the differentiation potential of 
precursor cells through changes in activity of the major ki-
nase signal transduction cascades (Fig. 2). It was determined, 
that MAP-kinases played an important, if not a key role in 
regulation of the differentiation potential of mesenchymal 
origin cells, including the cells under mechanical stress condi-
tions [41, 82, 83]. For instance, it was shown that  phosphory-
lation of Runx2 by MAP-kinases was needed in order for this 
protein to function in transcription activation [84]. Also, de-
creased/altered levels of MAP-kinase activity were an often 
seen cell response under simulated gravity conditions. Low-
ered levels of phosphorylated ERK1/2MAPK during the process 
of MMSC osteogenic differentiation in a rotational bioreactor 
[37, 38] or decreased levels of phosphorylated p38МАРК dur-
ing osteogenic ostoeblast differentiation in a 3D-clinostat [58] 
have also been reported.	

The role of autocrine signals in the regulation 
of the morpho-functional state and the 
commitment of mesenchymal stromal precursor-
cells under conditions of microgravity
The reciprocal suppression of the two differentiation path-
ways of MMSC may be attributed to the existence of other 
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regulatory mechanisms, including those of autocrine and 
paracrine nature. For instance, the products of one of the 
differentiation pathways may inhibit the production of 
compunds, which are needed for the formation of the other 
phenotype. Studies have shown that the lipoprotein lipase 
produced by adipocytes could bind sortilin, the expression 
of which was induced during osteogenic differentiation of 
MMSC, since this receptor protein was needed for the normal 
mineralization of the bone matrix. Moreover, sortilin itself 
was able mediate the endocytosis of lipoprotein lipase [85]. 
It has also been shown, that the increase in adipogenic dif-
ferentiation of MMSC’s obtained from osteoporosis patients 
was caused by an abnormal response of the cells to the leptin 
cytokine, which usually suppressed PPARγ by phosphoryla-
tion [86].

The functional role of most cytokines in the regulation of 
the MMSC lifecycle and in the adaptation of these and other 
osteogenic cells to microgravity has not been studied very 
deeply and requires further investigations. During recent 
years, researchers have paid much attention to the role of 
IL-8. It is known that the expression of the neutrophil-acti-
vating factor is regulated by IL-1β and TNF-a, and also by 
glucocorticoid hormones. Notably, IL-8 can regulate the ex-
pression of cell adhesion molecules, and also the excretion of 
several enzymes which can degrade the extracellular matrix 
[87]. These properties of IL-8 can be important for the local 
mechanisms of bone tissue remodeling, which are a part of 
several local cellular responses to microgravity. For example, 
bioptates of Macaca mulatta bones exposed to microgravity 

on the bio-sattelite «Bion-11» were found to exhibit activated 
resorption mediated by osteoclast resorption and osteocyte 
osteolysis. Neturophile activity was also elevated, and these 
cells excreted hydrolytic enzymes, which took part in the 
destruction of the mineralized bone matrix [88]. It was re-
cently shown, that the production of IL-8 in MMSC increased 
in response to repeated mechanic stretching, moreover, cells 
cultured in osteogenic medium showed the highest increase 
of IL-8 production [89]. Interestingly, a manifold activation of 
IL-6 and IL-8 production was seen in endothelial cells, which 
were subjected to simulated microgravity, using an RPM [90]. 
It was shown that the cells exhibiting different levels of com-
mitment (MMSC and their derivative osteogenic cells, and 
also osteoblasts) all responded to prolonged incubations in 
simulated microgravity in a similar manner, by an increased 
level of autocrine IL-8 production [91].

The role of the cytoskeleton in gravitational 
sensitivity of MMSC under  altered gravity 
Recently there are more and more observations giving 
strength to the idea that cytoskeletal structures and cell sur-
face receptors connected to them play an imporatant role in 
the regulation of the differentiation potential of stem cells, 
which is affected by signals from an “external mechanical 
field” (Fig. 3). Also, changes of shape and of the inner cy-
toskeletal architecture are common cell responses under 
conditions of real [22] or simulated microgravity [26, 46, 92]. 
It has been determined that changes in the morphological 
characteristics of cells, or modulation of the Rho family pro-
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Fig. 2. Molecular regulation 
of the proliferation and dif-
ferentiation of MMSCs under 
the control of an extracellular 
mechanical field.
Extracellular signals and 
mechanical stimuli or their 
absence act via putative 
extracellular channels and 
receptors (e.g., integrins) 
and possibly trough other 
still unknown mechanisms. 
Signals are transferred from 
integrins to integrin-related 
focal adhesion kinases (FAK, 
PYK), which are, in turn, 
involved in multiple signal 
transduction pathways, 
including MAP-kinases, cel-
lular cytoskeleton effectors 
(vinculin, paxillin, and talin), 
and Rho-kinases (ROCK). 
MAP–kinases regulate the 
main cell processes, such as 
proliferation, differentiation, 
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perform actin cytoskeleton 
remodeling. Вlue arrows 
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teins activity (GTPases that regulate actin cytoskeleton) can 
lead to the modification of the differentiation potential of 
MMSCs. For instance, activation of Rho-kinase (ROCK) by 
the upstream RhoA GTPase can induce the myogenic MMSC 
differentiation pathway and inhibit the adipogenic pathway 
even in the presence of the insulin-like IGF-I factor [93]. It is 
proposed that cell shape can act as a mechanical stimulus and 
plays an important role in the determination of the differen-
tiation pathway of the precursor cells. It was shown that well 
spread cells were inclined to differentiate down the osteo-
genic pathway, while round unspread cells tended to take the 
adipogenic fate. Expression of the dominant negative RhoA 
caused differentiation into adipocytes, while overexpression 
of the wild-type gene led to osteogenesis. The authors found 
that normal actin-myosin tension was required for the cor-
rect activation of Rho-kinases by RhoA and suggested that 
the cytoskeleton and the regulatory proteins coupled to it 
could act as an integral regulatory system that controlled cell 
differentiation decisions, which were mainly defined through 
mechanical signals [94]. Interestingly, cultivation of MMSC 
under simulated microgravity caused changes in the actin 
cytoskeleton, up to a complete absence of filamentous actin in 
the cell after a 7 day incubation. Another effect was a strong 
drop in the activity of RhoA-kinase. Moreover, transfection 
of the cells by a viral vector, which expressed a constitutively 
active RhoA, prevented the described cytoskeleton altera-
tions and neutralized the development of adipogenic features 
in the cells [92]. Direct interaction between ERK1/2MAPK with 

the integrin-mediated signaling pathway and also with the 
activity of several cytoskeletal effector proteins was dem-
onstrated by switching off of one of the actin cytoskeleton 
remodeling proteins (Rho), which caused the inactivation of 
the MAP-kinase cascade [95].

Studying all the complex factors that control the com-
mitment of MMSC cell differentiation can help elucidate the 
mechanisms, which are required for maintaining the delicate 
equilibrium between the two stem cell differentiation path-
ways. Deregulation of this equilibrium during hypokinesia or 
microgravity can lead to severe medical conditions, such as 
osteopenia or osteoporosis. In conclusion it is worth repeat-
ing, that multipotent mesenchymal stromal cells of the hu-
man bone marrow are the population of cells with low-level 
commitment, which are sensitive to gravitational changes. 
Despite the growing number of reports on the effect of real 
or microgravity on the morpho-functional state of various 
types of cultured osteogenic cells, the precise molecular and 
intracellular mechanisms of the observed effects are still not 
fully understood. However, the overall phenomenology of re-
sponses from osteogenic cells of various levels of commitment 
indicates that common mechanisms for sensing and respond-
ing to alterations in the gravitation field do exist. Further 
comprehensive studies in this field will facilitate fundamental 
understanding of the mechanisms of gravitational and me-
chanical sensitivity of adult precursor cells and their possible 
involvement in the local cell reactions, which take place in the 
bone tissue in a microgravity.   

Fig. 3.  Model of a mechanically mediated switch in MSC commitment. The cell shape acts as a mechanical cue, driving MSC commitment between 
adipocyte and osteoblast when RhoA signaling and cytoskeletal tension are intact. Well-spread cells prefer to differentiate into the osteogenic line-
age and round cells prefer to differentiate into the adipogenic lineage. When the cell shape is changing active RhoA is sufficient to replace biochemical 
stimuli whereas RhoA effector  - ROCK acts  independently of cell shape. Interference with the cell shape, RhoA signaling, ROCK activity, or cytoskel-
etal tension alters hMSC commitment. Red arrows indicate blocking of differentiation, blue arrows – activation of differentiation
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