УДК 575.176, 575.174.2, 612.858.4

Оценка гаплотипического разнообразия и реконструкция предкового гаплотипа, ассоциированного с мутацией c.35delG гена GJB2 (Сх26), в популяциях Волго-Уральского региона

Л. У. Джемилева^{1*}, О. Л. Посух², Н. А. Барашков³, С. А. Федорова³, Ф. М. Терютин³, В. Л. Ахметова¹, И. М. Хидиятова¹, Р. И. Хусаинова¹, С. Л. Лобов¹, Э. К. Хуснутдинова¹ Учреждение Российской академии наук Институт биохимии и генетики Уфимского научного центра Российской академии наук, 450054, Уфа, просп. Октября, 71 ²Учреждение Российской академии наук Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, просп. Акад. Лаврентьева, 10 ³Учреждение Российской академии медицинских наук Якутский научный центр комплексных медицинских проблем Сибирского отделения Российской академии медицинских наук, 677010, Якутск, Сергеляхское шоссе, 4

*E-mail: dzhemilev@anrb.ru

Поступила в редакцию 23.03.2011 г.

РЕФЕРАТ Наибольший вклад в генетически обусловленную потерю слуха вносят мутации гена GJB2 (Cx26). Спектр и распространенность отдельных мутаций гена GJB2 специфичны для популяций разной этнической принадлежности. Показано происхождение ряда мутаций гена GJB2 от предковой хромосомыоснователя, ориентировочно оценен их «возраст» и очерчены предположительные регионы их возникновения. Представлены результаты анализа частот гетерозиготного носительства мажорной в странах Европы мутации гена GJB2 – c.35delG у 2308 здоровых индивидов из 18 различных этнических популяций Евразии: башкиры, татары, чуваши, удмурты, коми-пермяки, мордва, русские (Волго-Уральский регион), белорусы, украинцы (Восточная Европа), абхазы, аварцы, черкесы, ингуши (Кавказ), казахи, узбеки, уйгуры (Центральная Азия), якуты, алтайцы (Сибирь). Характер распространения мутации с.35delG в изученных этнических группах может быть дополнительным свидетельством предполагаемой роли эффекта основателя в происхождении и распространении этой мутации в популяциях мира. Гаплотипический анализ хромосом с мутацией с.35delG, выявленной у больных с наследственной несиндромной нейросенсорной тугоухостью/глухотой (N=112) и в популяционных выборках (N=358), позволил реконструировать предковый гаплотип с этой мутацией, установить единство происхождения большинства исследованных мутантных хромосом и датировать время экспансии (11800 лет) носителей мутации с.35delG на территории Волго-Уральского региона.

КЛЮЧЕВЫЕ СЛОВА наследственная несиндромная нейросенсорная тугоухость/глухота, ген GJB2 (Cx26), мутация с.35delG, предковый гаплотип, популяции Волго-Уральского региона.

ВВЕДЕНИЕ

Врожденная глухота - одно из частых заболеваний человека, регистрируемое у одного из 1000 новорожденных детей. В вопросах этиологии и патогенеза заболевания остается много неясного, но считается, что примерно в половине всех случаев врожденной глухоты имеют место генетические нарушения [1].

Наследственные формы врожденного нарушения слуха характеризуются клиническим полиморфизмом и генетической гетерогенностью. В ядерном геноме картировано около 114 локусов и идентифицировано 55 генов, мутации в которых в той или иной степени приводят к нарушениям слуха. Около 80% всех случаев несиндромной наследственной глухоты приходится на аутосомно-рецессивные формы, 15-20% – на аутосомно-доминантные, а на сцепленную с Х-хромосомой и митохондриальные формы глухоты – около 1% [2].

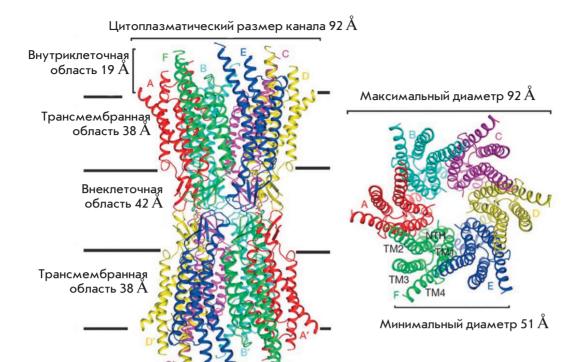


Рис. 1. Структура межклеточного канала, образованного молекулами коннексина 26. A, B, C, D, F, Еи A', B', C', D', F', E' - молекулы коннексина 26 в коннексонах соседних клеток; ТМ1-4 - трансмембранные сегменты белка Cx26: NTH -N-концевая спираль белка Сх26. Рисунок адаптирован из [3] с разрешения Macmillan Publishers Ltd.

Наиболее частая причина несиндромной аутосомно-рецессивной глухоты у человека - мутации в гене GJB2 (gap junction β2, субъединица β2 белка щелевых контактов), локализованном в области 13q11-q13 и кодирующем коннексин 26 (Cx26) трансмембранный белок, участвующий в образовании коннексонов. Коннексоны – это структуры, состоящие из шести белковых субъединиц, формирующих межклеточные каналы, посредством которых обеспечивается полноценный ионный обмен между соседними клетками, что, в свою очередь, способствует поддержанию гомеостаза эндолимфы в тканях улитки. Недавно опубликованы сведения о тонкой структуре межклеточных каналов, образованных коннексином 26 (рис. 1) [3]. При дефектах коннексина 26 в тканях внутреннего уха необратимо нарушается работа межклеточных каналов и не происходит восстановления гомеостаза эндолимфы, необходимого для нормального звуковосприятия [4].

В настоящее время в гене GJB2 уже описано более 150 патогенных мутаций (в основном, рецессивных), ряд полиморфизмов и однонуклеотидных замен, роль которых в патогенезе потери слуха пока неясна [2]. Спектр и частоты мутаций гена GJB2 характеризуются существенными межпопуляционными различиями. Установлена расовая и/или этническая специфичность распространенности ряда мутаций гена GJB2, обусловленная, в ряде случаев, эффектом основателя, а также, возможно, географической и социальной изоляцией некоторых популяций. Уда-

лось показать происхождение ряда мутаций гена GJB2 от предковой хромосомы-основателя, получены ориентировочные оценки «возраста» мутаций и очерчены предполагаемые регионы их возникновения [5-10]. Наиболее распространенная в Европе мутация c.35delG (p.Gly12Valfsx1) впервые возникла, по разным оценкам, от 10000 до 14000 лет назад на территории Ближнего Востока или Средиземноморья (возможно, на территории современной Греции) [10-12] и с миграциями неолитической популяции Homo sapiens распространилась в Европе [6]. Анализ гаплотипов хромосом, несущих другую мутацию c.235delC (p.Leu79Cysfsx3), в популяциях Японии, Кореи, Китая и Монголии позволил выдвинуть гипотезу об эффекте основателя в происхождении и распространении этой мутации на территории Восточной Азии, оценить ее «возраст» (~11500 лет) и предположительное возникновение в регионе озера Байкал, откуда путем последовательных миграций она распространилась по территории Азии [7]. Оценен также «возраст» наиболее распространенной в Индии мутации c.71G > A (p.Trp24X) (~7880 лет) [8]. Показана этническая специфичность мутации c.167delT (p.Leu56Argfsx26) для популяций евреев ашкенази [5] и мутации c.427C > T (p.Arg143Trp) для некоторых популяций Западной Африки [13, 14].

В России изучению наследственных форм глухоты посвящены работы ряда исследовательских групп [15—32]. В большинстве случаев рассматриваются генетикоэпидемиологические и клинико-генетические особен-

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Таблица 1. Частоты гетерозиготного носительства мутации c.35delG в 18 этнических группах, проживающих на территории Евразии

па торритор	ии свразии									
Популяция	Лингвистическая классификация (языковая семья/ группа)	Регион	N	Гетерозиготные носители мутации с.35delG /число протестированных индивидов (частота гетерозиготного носительства)						
	Восточная Европа									
Белорусы	Индоевропейская/ Славянская	Республика Беларусь (дисперсная выборка)	97	6/97 (0.062)						
Украинцы	Индоевропейская/ Славянская	Харьковская, Полтавская области Украины	90	3/90 (0.033)						
		Волго-Уральский регион								
Русские	Индоевропейская/ Славянская	Екатеринбургская область, РФ	92	2/92 (0.022)						
Башкиры	Алтайская/ Тюркская	Баймакский, Бурзянский, Абзелиловский, Кугарчинский, Салаватский, Архангельский районы Республики Башкортостан, РФ	400	1/400 (0.003)						
Татары	Алтайская/ Тюркская	Альметьевский и Елабужский районы Республики Татарстан, РФ	96	1/96 (0.010)						
Чуваши	Алтайская/ Тюркская	Моргаушский район Республики Чувашия, РФ	100	0/100						
Мордва	Уральская/ Финно- угорская	Старошайгинский район Республики Мордовия, РФ	80	5/80 (0.062)						
Удмурты	Уральская/ Финно- угорская	Малопургинский район Республики Удмуртия, Татышлинский район Республики Башкортостан, РФ	80	3/80 (0.037)						
Коми- пермяки	Уральская/ Финно- угорская	Качаевский район Коми-Пермяцкого автономного округа, РФ		0/80						
		Средняя Азия								
Казахи	захи Алтайская/ Алма-Атинская, Кызылординская области, Абайский район Казахстана		240	2/240 (0.008)						
Уйгуры	Алтайская/ Тюркская	Алма-Атинская область Казахстана	116	1/116 (0.009)						
Узбеки	Алтайская/ Тюркская	Республика Узбекистан (дисперсная выборка)	60	0/60						
		Кавказ								
Абхазы	Северо-кавказская/ Адыго-абхазская	Абхазия, Грузия (дисперсная выборка)	80	3/80 (0.038)						
Аварцы	Северо-кавказская / Дагестанская	Гумбетовский район Республики Дагестан, РФ	60	0/60						
Черкесы	Северо-кавказская/ Адыго-абхазская	Карачаево-Черкесская Республика, РФ		1/80 (0.013)						
Ингуши	Северо-кавказская / Нахская	Назрановский район Республики Ингушетия, РФ	80	0/80						
Сибирь										
Алтайцы	Алтайская/ Тюркская	Республика Алтай, РФ	230	0/230						
Якуты	Алтайская/ Тюркская	Мегино-Кангаласский, Амгинский, Чурапчинский, Таттинский, Верхневилюйский, Вилюйский, Нюрбинский, Сунтарский улусы (районы) Республики Саха (Якутия), РФ	247	1/247 (0.004)						

ности наследственных форм тугоухости, ряд работ посвящен молекулярно-генетическому анализу гена GJB2 или его отдельных мутаций [17-21, 25-30]. В некоторых работах получены данные о специфичности спектра и частоты отдельных мутаций гена GJB2 в зависимости от региона исследования. Так, например, наиболее частые мутации в сибирских популяциях (якуты и алтайцы) – IVS1 + 1G > A [27] и с.235delC [25] соответственно, а в популяциях Волго-Уральского региона, как и в целом в европейской части континента, преобладает мутация c.35delG [18-22, 28]. Локальные различия в частотах гетерозиготного носительства мутации c.35delG, вероятно, связаны с генетической историей отдельных этносов, с факторами популяционной динамики и миграционными путями носителей с.35delG. Имеющиеся информативные данные о вкладе мутаций гена GJB2 в развитие патологии у больных несиндромной нейросенсорной тугоухостью/глухотой (НСНТ), проживающих в Волго-Уральском регионе, и популяционные данные о гетерозиготном носительстве наиболее значимой рецессивной мутации c.35delG позволили адекватно оценить гаплотипическое разнообразие хромосом с мутацией c.35delG, реконструировать возможный предковый гаплотип, сцепленный с этой мутацией, и оценить время ее возникновения на территории Волго-Уральского региона, являющегося восточной границей ареала распространения мутации c.35delG.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалом для гаплотипического анализа и оценки «возраста» с.35delG гена GJB2 послужили образцы ДНК 56 (112 хромосом) больных НСНТ, проживающих на территории Волго-Уральского региона, у которых мутация с.35delG идентифицирована в гомозиготном состоянии (32 русских, 10 татар, 1 башкир, 4 украинца, 2 армянина, 7 метисов). В контрольную группу включены 179 (358 хромосом) здоровых индивидов из трех этногеографических групп русских (N=86), татар (N=62) и башкир (N=31), у которых данная мутация не выявлена.

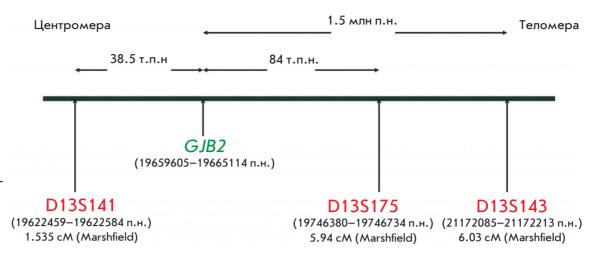
Для анализа частоты гетерозиготного носительства c.35delG использованы 2308 образцов ДНК, полученных от здоровых неродственных индивидов — представителей различных этносов Волго-Уральского региона, Средней Азии, Северного Кавказа, Восточной Европы и Сибири, принадлежащих к четырем языковым семьям (табл. 1).

Образцы крови получены во время экспедиционных выездов в 2000—2010 гг. после информированного письменного согласия участников исследования. Геномную ДНК выделяли из лейкоцитов свежей или замороженной консервированной крови методом последовательной фенол-хлороформной экстракции.

Данная научно-исследовательская работа одобрена локальным этическим комитетом по биомедицинской этике при ИБГ УНЦ РАН (Уфа).

Скрининг мутации c.35delG в гене GJB2

Скрининг мутации с.35delG в гене GJB2 проводили с помощью аллель-специфической амплификации фрагментов кодирующего района GJB2 с использованием праймеров, приведенных в maбn. 2. Результаты визуализировали при помощи вертикального электрофореза в 10% полиакриламидном геле ($\Pi AA\Gamma$) с последующим окрашиванием раствором этидия бромида стандартной концентрации и просмотра в ультрафиолетовом свете.


Анализ гаплотипов и оценка «возраста» мутации c.35delG

Для анализа гаплотипов и оценки «возраста» мутации с.35delG в гене GJB2 использовали три высокополиморфных микросателлитных CA-маркера: D13S175, D13S141 и D13S143 [6, 9, 10, 12, 36], окружающих локус DFNB1, содержащий ген GJB2. Физическая и генетическая локализация маркеров на хромосоме 13 и генетические расстояния между ними и геном GJB2 были определены на основании генетической карты сцепления Marshfield (http://www.ncbi.nlm. nih.gov/mapview/). Общая физическая протяженность фланкируемого региона составила ~ 2 млн п.н.

Таблица 2.	Праймеры.	использованные	для амплификации

Локус	Название праймера и нуклеотидная последовательность	Метод детекции	Ссылка
GJB2 (13q11-q12)	35delG F-5'-CTTTTCCAGAGCAAACCGCCC-3' 35delG R-5'-TGCTGGTGGAGTGTTTGTTCAC-3'		[15]
D13S141	F-5'-GTCCTCCCGGCCTAGTCTTA-3' R-5'-ACCACGGAGCAAAGAACAGA-3'	Визуализация	[33]
D13S143	F-5'-CTC ATG GGC AGT AAC AAC AAAA-3' R-5'-CTT ATT TCT CTA GGG GCC AGC T-3'	ПЦР-фрагментов в 10% ПААГ	[34]
D13S175	F-5'-TAT TGG ATA CTT GAA TCT GCT G-3' R-5'-TGC ATC ACC TCA CAT AGG TTA-3'		[35]

Рис. 2. Локализация микросателлитных маркеров D13S141, D13S175 и D13S143, фланкирующих ген *GJB2*, на хромосоме 13. Расстояния между геном *GJB2* и маркерами обозначены стрелками.

(рис. 2). Выбор маркеров обусловлен, в первую очередь, стремлением к возможной сопоставимости данных, поскольку ранее эти маркеры уже использовали для оценки «возраста» мутаций в гене GJB2 в различных популяциях [6, 9, 10, 12, 36].

STR-маркеры генотипировали с помощью ПЦР на программируемом термоциклере фирмы «Eppendorf» с использованием олигонуклеотидных праймеров ($maбл.\ 2$). Продукты реакции разделяли с помощью вертикального электрофореза (стекла размером 20×20 см фирмы «Helicon», Россия) в 10% ПААГ с 5% глицерином. Гели окрашивали ионами серебра.

Неравновесие по сцеплению между аллелями локусов хромосомы 13 рассчитывали по формуле:

$$\delta = (Pd - Pn)/(1 - Pn),$$

где δ — мера неравновесия по сцеплению, Pd — частота ассоциированного аллеля среди хромосом с мутацией, Pn — частота этого же аллеля среди хромосом без мутации [37].

Статистическую значимость различий частот аллелей исследованных маркеров на 112 хромосомах, содержащих с.35delG, и 358 хромосомах без этой мутации оценивали с помощью стандартного критерия χ^2 для двупольной таблицы (пакет приложений программ MedStat).

«Возраст» экспансии гаплотипа-основателя с мутацией с.35delG гена GJB2 оценивали с использованием подхода «генетических часов» [38], основанного на определении количества поколений (q) с момента появления мутации в популяции до настоящего времени, исходя из соотношения неравновесия по сцеплению полиморфных маркеров, сцепленных с локусом заболевания. «Возраст» экспансии гаплотипа-основателя с мутацией с.35delG рассчитывали по формуле:

$$q = \log[1 - Q/(1 - Pn)]/\log(1 - \Theta),$$

где q — количество поколений с момента появления мутации в популяции, Q — доля мутантных хромосом без гаплотипа-основателя, Pn — частота аллеля гаплотипа-основателя в популяции, Θ — рекомбинационная фракция. Значение Θ рассчитано по физическому расстоянию маркеров от местоположения мутации исходя из соотношения 1 cM = 1000 т.п.н.

Величину аллельной ассоциации оценивали по коэффициенту стандартного неравновесия согласно [39]:

$$\Delta St = \frac{p - q}{\sqrt{(p + q)(2 - p - q)}},$$

где p и q — частоты аллелей или гаплотипов нормальной (p) и мутантной (q) хромосомы.

Показатель гаплотипического разнообразия, эквивалентный ожидаемой гетерозиготности, рассчитывали по формуле:

$$h = (1 - \sum x_i^2) N / (N - 1) ,$$

где x — частота каждого гаплотипа в популяции, N — объем выборки [40].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Во многих популяциях мира основной вклад в развитие несиндромной нейросенсорной тугоухости/глухоты (НСНТ) вносят мутации гена *GJB2*. В большинстве европейских популяций до 40-50% случаев НСНТ обусловлены одной из мажорных рецессивных мутаций этого гена — мутацией с.35delG, выявляемой в гомозиготном или компаунд-гетерозиготном состоянии [41]. В связи с этим во многих работах анализировали частоты гетерозиготного носительства с.35delG в различных популяциях мира. Так, в масштабном исследовании, охватывающем 17 европейских стран,

показано, что средняя частота гетерозиготного носительства мутации c.35delG составляет 1.96% (1/51) с вариацией от 2.86% (1/35) в странах Южной Европы до 1.26% (1/79) в странах Северной Европы [42]. Среди стран Средиземноморья самые высокие частоты гетерозиготного носительства c.35delG наблюдались в Греции (3.5%), в южных регионах Италии (4.0%) и Франции (3.4%) [43]. В результате метаанализа частоты c.35delG более чем у 23000 индивидов из различных популяций, проведенного на основе данных, опубликованных за период с 1998-2008 г., были определены средние региональные частоты c.35delG в европейских (1.89%), американских (1.52%), азиатских (0.64%), африканских (0.64%) популяциях и в Океании (1%), подтвержден градиент снижения частоты c.35delG (от 2.48 до 1.53%) с юга на север в европейских популяциях и с запада на восток (от 1.48 до 0.1%) в азиатских [44].

Частота гетерозиготного носительства мутаций c.35delG

Нами проведен анализ частоты гетерозиготного носительства мутации c.35delG в 18 популяциях России и стран бывшего Советского Союза (табл. 1).

Высокие частоты гетерозиготного носительства c.35delG выявлены в двух восточноевропейских популяциях – у украинцев (3.3%) и белорусов (6.2%). В тюркоязычных популяциях Волго-Уральского региона мутация c.35delG обнаружена с частотами 1.0, 0.3 и 0% – у татар, башкир и чувашей соответственно. Среди финно-угорских популяций Волго-Уральского региона мутация c.35delG представлена с высокой частотой 6.2% у мордвы, 3.7% у удмуртов и отсутствовала у коми-пермяков. Эти флуктуации частоты гетерозиготного носительства c.35delG среди изученных финно-угорских популяций Волго-Уральского региона обусловлены, возможно, специфическими особенностями исторического формирования этих популяций на территории Волго-Уральского региона либо могут быть следствием относительно малых размеров выборок. Ранее высокую частоту c.35delG (4.4%) обнаружили у эстонцев, что стало очевидным исключением для популяций Северной Европы, характеризующихся низкими частотами c.35delG [42]. Эти, а также полученные в других исследованиях данные [15, 20-22, 28, 29] свидетельствуют о существенной вариабельности частоты гетерозиготного носительства c.35delG среди коренных популяций Волго-Уральского региона. Частота гетерозиготного носительства c.35delG, выявленная нами у русских -2.2%, сопоставима с результатами для русского населения в центральных регионах России [15, 18, 28]. В тюркоязычных популяциях Центральной Азии (казахи, уйгуры, узбеки) мутация c.35delG с низкой частотой обнаружена у казахов (0.8%) и уйгуров (0.9%) и не выявлена у узбеков. В тюркоязычных популяциях Сибири (якуты, алтайцы) мутация с.35delG с относительно низкой частотой (0.4%) выявлена в популяции якутов, но не обнаружена в популяции алтайцев. Регион Северного Кавказа — в прошлом один из значимых коридоров миграций человека по территории Евразии, характеризуется высоким разнообразием населения со сложной историей формирования проживающих там этносов. В популяциях Северного Кавказа (абхазы, аварцы, черкесы, ингуши) мутация с.35delG выявлена только у абхазов (3.8%) и черкесов (1.3%).

Пространственное распределение частоты гетерозиготного носительства мутации с.35delG в популяциях Евразии, полученное на основе собственных данных в совокупности с опубликованными сведениями о частоте с.35delG на территории евразийского континента, доступными на 2010 г. [24], представлено на рис. 3.

Полученные нами данные существенно дополнили картину распределения мутации с.35delG на территории Евразии: европейские регионы России, как и в целом европейская часть континента, характеризуются высокой частотой с.35delG и эта мутация широко распространена также и в полиэтничном населении Волго-Уральского региона. Однако механизмы ее распространенности и время возникновения на территории Волго-Уральского региона остаются неизученными. Для ответа на эти вопросы мы провели гаплотипический анализ хромосом с мутацией с.35delG и без нее с использованием трех высокополиморфных микросателлитных СА-маркеров: D13S175, D13S141 и D13S143 [6, 9, 10, 12, 36], фланкирующих локус DFNB1, содержащий ген GJB2 (рис. 2).

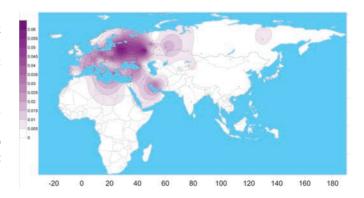


Рис. 3. Пространственное распределение частоты гетерозиготного носительства мутации с.35delG гена *GJB2* в популяциях Евразии (выполнено с использованием программы SURFER 9.0 Golden Software Ink).

Таблица 3. Распределение частот аллелей микросателлитных маркеров D13S141, D13S175 и D13S143 у пациентов с HCHT (хромосомы с мутацией с.35delG) и в контрольной выборке (нормальные хромосомы)

A	Хромосомы с мутацией с.35delG (N = 112)		Нормальные хромосомы $(N = 358)$		**2	<i>p</i>			
Аллель, п.н.	количество хромосом	частота аллеля	количество хромосом	частота аллеля	χ^2	(95% уровень значимости)			
D13S141									
113	0	0	10	0.027 ± 0.008	0.3131	0.6			
123	26	0.232±0.031	211	0.589 ± 0.026	43.458	0.000			
125	84	0.750 ± 0.042	112	0.312±0.024	67.058	0.000			
127	2	0.017±0.002	25	0.069±0.013	4.2629	0.045			
			D13S175						
101	3	0.026±0.012	21	0.058±0.01	1.793	0.300			
103	8	0.071 ± 0.021	88	0.245 ± 0.02	15.875	0.000			
105	91	0.812±0.036	157	0.438±0.02	47.866	0.000			
107	1	0.008±0.007	30	0.083 ± 0.01	7.763	0.005			
109	6	0.053±0.024	38	0.106±0.01	2.783	0.100			
111	0	0	7	0.019 ± 0.007	2.222	0.150			
113	3	0.026±0.01	17	0.047±0.01	0.897	0.064			
			D13S143						
126	1	0.008±0.007	0	0	3.192	0.04			
128	1	0.008±0.007	5	0.013±0.006	0.169	0.65			
130	90	0.80±0.048	283	0.79±0.021	0.088	0.81			
132	6	0.05±0.026	26	0.07±0.013	0.490	0.54			
134	12	0.11±0.016	37	0.10±0.013	0.012	0.89			
136	2	0.017±0.021	3	0.008±0.004	0.727	0.55			
138	0	0	4	0.011±0.005	3.278	0.05			

Частоты аллелей локусов D13S141, D13S175 и D13S143

В табл. 3 приведено распределение частот аллелей микросателлитных маркеров D13S141, D13S175 и D13S143 у больных НСНТ (хромосомы с мутацией с.35delG) и в контрольной выборке (нормальные хромосомы), включающей три этнические группы (русские, татары, башкиры).

В других работах область размером в 2 млн п.н., покрываемая этими тремя маркерами, позволила рассчитать приблизительное число поколений, прошедших после начала экспансии предполагаемого гаплотипа-основателя, включающего мутации гена GJB2, в популяциях Индии (мутация р.Trp24X) [8] и Марокко (мутация c.35delG) [9]. Панель из восьми STR-маркеров (D4S189, D13S1316, D13S141, D13S175, D13S1853, D13S143, D13S1275, D13S292) и двух SNPмаркеров использована при датировке «возраста» мутации сайта сплайсинга IVS1 + 1G > A гена GJB2 в популяции якутов [27]. «Возраст» мутаций c.35delG и c.235delC рассчитывали с использованием шести SNP-маркеров [6, 7]. В более поздних работах по уточнению «возраста» мутации c.35delG в Греции использовали два STR-маркера, D13S175, D13S141, и шесть SNP-маркеров [12].

D13S141. Маркер D13S141 имеет семь аллельных вариантов [9, 12], однако в этнических группах из Волго-Уральского региона их выявлено только четыре. Частота аллеля 123 (D13S141) значимо выше ($\chi^2=43.458;\;p=0.000$) на хромосомах индивидов из контрольной группы — 59%, тогда как у больных НСНТ только 23%. Аллель 125 (D13S141) обнаруживается на мутантных хромосомах с частотой 75%, что значимо выше, чем на нормальных хромосомах (31%) ($\chi^2=67.058;\;p=0.000$), и согласуется с данными о преобладании аллеля 125 (D13S141) на хромосомах с мутацией с.35delG у больных НСНТ из Марокко, Греции, Палестины и Израиля [9, 10, 12, 45].

D13S175. Маркер D13S175 имеет восемь аллельных вариантов [9, 10, 12], из которых в этнических группах из Волго-Уральского региона представлены семь. Аллель 105 (D13S175) на хромосомах с c.35delG обнаруживается с частотой 81.2%, значимо более высокой по сравнению с нормальными хромосомами (43.8%) ($\chi^2=47.866$; p=0.000), а аллель 103 (D13S175) значимо чаще обнаруживался на хромосомах индивидов из контрольной группы ($\chi^2=47.866$; p=0.000 и $\chi^2=15.875$; p=0.000 соответственно) (ma6n.3). Ранее было показано, что на хромосомах с мутацией c.35delG

у индивидов с НСНТ из Туниса, Алжира, Марокко и Греции аллель 105 (D13S175) также обнаруживается с высокой частотой (от 67 до 100%) [9, 12, 46]. Аллель 111 (D13S175) не обнаружен на хромосомах индивидов с НСНТ, но встречается на 2% хромосом у лиц с нормальным слухом.

D13S143. Маркер D13S143 имеет восемь аллельных вариантов [9, 12], из них в этнических группах из Волго-Уральского региона выявлены семь. Аллель 130 (D13S143) является наиболее частым как на нормальных хромосомах (79%), так и на хромосомах с c.35delG (80%), а аллель 134 (D13S143) чаще обнаруживается на хромосомах индивидов с мутацией с.35delG ($\chi^2 = 9.909$; p = 0.005).

Таким образом, при анализе распределения частот аллелей трех микросателлитных локусов D13S141, D13S175 и D13S143 на нормальных хромосомах и хромосомах с мутацией с.35delG было установлено выраженное неравновесие по сцеплению между определенными аллелями данных маркеров и мутацией с.35delG в гене GJB2 (maбл. 3). Степень ассоциаций аллелей изученных внегенных микросателлитных локусов наглядно отражает стандартный коэффициент аллельной ассоциации (ΔSt) [39]: наибольшая степень сцепления с мутацией с.35delG характерна для аллеля 125 маркера D13S141 ($\Delta St = -0.438$) и аллеля 105 маркера D13S175 ($\Delta St = -0.386$).

Гаплотипический анализ и определение возраста мутации c.35delG

Учитывая данные, полученные нами при изучении полиморфизма маркеров D13S141, D13S175 и D13S143, неравновесное сцепление их опреде-

ленных аллелей с мутацией с.35delG в кодирующем регионе *GJB2*, мы предположили, что они могут свидетельствовать о существовании единого предкового гаплотипа, включающего эту мутацию. В связи с этим по трем полиморфным локусам реконструированы гаплотипы членов каждой из 56 семей с наследственной глухотой и здоровых доноров. Точная идентификация гаплотипа по аллелям D13S175-D13S143-D13S141 возможна для 112 мутантных хромосом с с.35delG и 358 нормальных хромосом.

Во всех анализируемых хромосомах выявлено 59 различных вариантов гаплотипов, из которых 52 обнаруживались на нормальных хромосомах и 25 — на хромосомах с мутацией с.35delG (табл. 4).

Распределение гаплотипов на 358 нормальных хромосомах характеризуется высоким значением гаплотипического разнообразия (h = 0.943), причем частота самого распространенного гаплотипа 123-105-130 составляет 17.8%, и 11 других гаплотипов обнаруживаются с частотами, превышающими 2%. Распределение частот гаплотипов на 112 хромосомах с мутацией c.35delG отличает более низкое значение гаплотипического разнообразия (h = 0.645), наиболее частым является гаплотип 125-105-130 (59%), и частота шести гаплотипов превышает 2%. Семь гаплотипов, редко встречающихся на мутантных хромосомах (менее 2%), не были выявлены на нормальных хромосомах. Наглядное графическое представление частот встречаемости гаплотипов D13S141-D13S175-D13S143 на нормальных хромосомах здоровых доноров и хромосомах с мутацией c.35delG у индивидов с HCHT приведено на рис. 4.

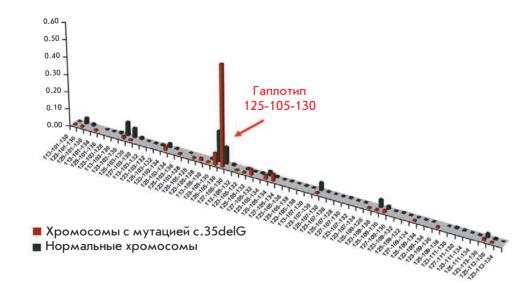


Рис. 4. Распределение частот гаплотипов D13S141—D13S175—D13S143 на нормальных хромосомах и хромосомах с мутацией с.35delG у больных с HCHT. По оси ординат указаны частоты гаплотипов, по оси абсцисс — названия гаплотипов. Стрелкой показан гаплотип 125-105-130.

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Таблица 4. Частоты гаплотипов D13S141-D13S175-D13S143, выявленные на хромосомах пациентов с генотипом c.35delG / c.35delG и на нормальных хромосомах у здоровых доноров из Волго-Уральского региона

	Инди c.35delG /		Контроль	в целом	Pyco	ские	Тата	ары	Башғ	иры
Гаплотип	Абсо- лютное значение	Частота	Абсо- лютное значение	Частота	Абсо- лютное значение	Частота	Абсо- лютное значение	Частота	Абсо- лютное значение	Частота
113-101-130	1	0.009	1	0.002	0	0	1	0.008	0	0
123-101-130 125-101-130	0	0.009	12	0.033	4	0.023	7	0.056	1 0	0.016
113-101-134	1	0.009	0	0.011	0	0.025	0	0	0	0
125-101-136	0	0	1	0.002	1	0.006	0	0	0	0
123-103-128	0	0	1	0.002	0	0	1	0.008	0	0
113-103-130	0	0	3	0.008	2	0.012	1	0.008	0	0
123-103-130	2	0.018	28	0.078	13	0.076	12	0.097	3	0.048
125-103-130 127-103-130	0	0.009	20 5	0.055 0.013	12	0.070	0	0.032	1	0.064 0.016
113-103-132	0	0	1	0.002	0	0.025	1	0.008	0	0.010
123-103-132	0	0	1	0.002	0	0	1	0.008	0	0
125-103-132	0	0	2	0.005	1	0.006	1	0.008	0	0
123-103-134	3	0.027	8	0.022	2	0.012	4	0.032	2	0.032
125-103-134 125-103-136	0 1	0.009	0	0.008	0	0.017	0	0	0	0
123-103-138	0	0.003	1	0.002	0	0	1	0.008	0	0
125-105-128	1	0.009	0	0.002	0	0	0	0.000	0	0
123-105-128	2	0.018	0	0	0	0	0	0	0	0
113-105-130	1	0.009	3	0.008	3	0.017	0	0	0	0
123-105-130 125-105-130	8 66	0.071 0.590	35	$0.178 \\ 0.097$	25 24	0.145	5	0.194	15 6	$0.242 \\ 0.097$
125-105-130	0	0.590	3	0.097	3	0.140	0	0.040	0	0.097
113-105-132	1	0.009	0	0	0	0	0	0	0	0
123-105-132	1	0.009	3	0.008	0	0	2	0.016	1	0.016
125-105-132	4	0.036	1	0.002	1	0.006	0	0	0	0
127-105-132	0	0.007	2	0.005	2	0.012	0	0.020	0	0 020
123-105-134 125-105-134	<u>3</u> 5	0.027 0.045	9 4	0.025 0.011	3	0.017	1	0.032	0	0.032
127-105-134	0	0.045	1	0.002	0	0.017	1	0.008	0	0
123-105-136	0	0	2	0.005	0	0	2	0.016	0	0
125-105-138	0	0	1	0.002	0	0	1	0.008	0	0
123-105-138	0	0	1	0.002	1	0.006	0	0	0	0
113-107-130 123-107-130	0	0.009	1 16	0.002 0.044	0 4	0.023	1 4	0.008	8	0.129
125-107-130	0	0.005	1	0.002	1	0.006	0	0.002	0	0.123
123-107-128	0	0	1	0.002	0	0	0	0	1	0.016
125-107-128	0	0	1	0.002	0	0	1	0.008	0	0
127-107-130 123-107-132	0	0	1	0.005 0.002	0	0	1	0.016	0	0
123-107-134	0	0	1	0.002	0	0	1	0.008	0	0
125-109-126	1	0.009	0	0	0	0	0	0	0	0
123-109-130	1	0.009	16	0.044	9	0.052	4	0.032	3	0.048
125-109-130	2	0.018	7	0.019	6	0.035	1	0.008	0	0
127-109-130 123-109-132	0	0	2	0.002	1	0.006	0	0 008	0	0
125-109-132	0	0	1	0.003	1	0.006	0	0.008	0	0
127-109-134	1	0.009	1	0.002	0	0	0	0	1	0.016
125-109-134	0	0	1	0.002	1	0.006	0	0	0	0
123-109-134	0	0	1	0.002	1	0.006	0	0	0	0
123-109-136 125-109-138	0	0.009	0 1	$0 \\ 0.002$	0 1	0.006	0	0	0	0
123-111-130	0	0	3	0.002	0	0.000	3	0.024	0	0
127-111-130	0	0	2	0.005	1	0.006	0	0	1	0.016
123-111-134	0	0	1	0.002	0	0	1	0.008	0	0
125-111-134	0	0.018	1	0.002	0	0 025	0	0 000	1	0.016
123-113-130 125-113-130	1	0.018	3	0.022	6 2	0.035	1	0.008	0	0.016
123-113-134	0	0.009	1	0.008	0	0.012	0	0.008	1	0.016
Гаплотипи- ческое разно- образие	0.645		0.943	0.002	0.944		0.917		0.946	0.000
Всего хромосом	112		358		172		124		62	
Количество										
вариантов гаплотипов	25		52		32		32		17	

Анализ распределения гаплотипов D13S141—D13S175—D13S143 на нормальных хромосомах лиц различного этнического происхождения (русские, татары, башкиры) выявил различия в спектре гаплотипов в изученных этнических группах и статистически значимые различия в частотах гаплотипов ($\chi^2 = 57.335$, p = 0.000 d.f. = 56). У русских (число проанализированных хромосом — 172) выявлено 32 гаплотипа из 59, обнаруженных в общей выборке, у татар (число хромосом 124) — 32 из 59, у башкир (62 хромосомы) — 17 из 59 гаплотипов.

Наиболее распространенными гаплотипами у русских были 123-105-130 (14.5%), 125-105-130 (14.0%) и 123-103-130 (7.6%), остальные 29 гаплотипов встречались с различными частотами - от 0.6% (12 гаплотипов) до 7.0% (гаплотип 125-103-130). На нормальных хромосомах у татар самыми частыми были 123-105-130 и 123-103-130 с частотами 19.4 и 9.7% соответственно, а частоты остальных 30 гаплотипов варьировали от 0.8% (19 гаплотипов) до 5.6% (гаплотип 123-101-130). У башкир с наибольшей частотой регистрировались гаплотипы 123-105-130 (24.2%), 123-107-130 (12.9%) и 125-105-130 (9.7%), суммарная частота которых достигает 46.8%. Частоты оставшихся 14 гаплотипов варьировали от 1.6% (9 гаплотипов) до 6.4% (гаплотип 125-103-130). Кроме того, в каждой этнической группе с невысокими частотами обнаружены специфические, не встречающиеся в других группах, гаплотипы D13S141-D13S175-D13S143: у русских - 14 гаплотипов, у татар - 15, у башкир - 4.

Таким образом, анализ гаплотипов D13S141—D13S175—D13S143 выявил достоверно более высокую частоту гаплотипа 125-105-130 на хромосомах с мутацией с.35delG по сравнению с хромосомами здоровых доноров ($\chi^2=64.866$, p<0.001), а также этноспецифичность спектров и частот встречаемости гаплотипов D13S141—D13S175—D13S143 в трех этнических группах здоровых доноров.

В *табл.* 5 приведены данные об ассоциации и неравновесию по сцеплению аллелей маркеров D13S175, D13S143 и D13S141 с мутацией с.35delG.

Таблица 5. Ассоциация и неравновесие по сцеплению аллелей маркеров D13S141, D13S175, D13S143 с мутацией c.35delG

Маркер	Аллель	р (95% уровень значимости)	χ^2	δ	
D13S141	125	< 0.001	67.05872	0.636179	
D13S175	105	< 0.001	47.8665	0.666045	
D13S143	130	0.81	0.08801	0.062381	

Наибольшие значения параметра неравновесия по сцеплению получены для аллелей 105 и 125 маркеров D13S175 и D13S141 соответственно, расположенных проксимально по отношению к гену GJB2, наименьшее — для аллелей дистально расположенного маркера D13S143. Исходя из значений χ^2 и параметра неравновесия по сцеплению δ , наиболее вероятный гаплотип основателя (предковый гаплотип) представляется состоящим из аллелей 125-105-130 (рис. 4). Гаплотип 125-105-130 выявлен на 59% всех хромосом, несущих мутацию c.35delG, что достоверно выше (p < 0.001) частоты этого гаплотипа (9.7%) на нормальных хромосомах.

Для расчета числа поколений, прошедших после начала распространения мутации с.35delG в популяциях Волго-Уральского региона, выбраны два маркера — D13S175 и D13S141. Критерием отбора данных маркеров служили относительно высокие показатели значения параметров χ^2 и меры неравновесия по сцеплению δ , также учитывали статистически значимые отличия в распределении частот аллелей этих маркеров между хромосомами с мутацией с.35delG и без нее.

Не выявлено статистически значимых отличий в распределении частот аллелей маркера D13S143 между хромосомами с c.35delG и без данной мутации (табл. 3), при этом наблюдалось также минимальное значение параметра неравновесия по сцеплению (табл. 5). Преобладание аллеля 130 данного STR-маркера в двух группах хромосом (с мутацией c.35delG и без нее) формально объясняет отсутствие статистически значимых отличий. Тем не менее, учитывая статистически значимые отличия, полученные для двух других, более близких к мутации c.35delG, STR-маркеров, существование предкового для мутации c.35delG гаплотипа, включающего область, покрываемую маркерами D13S141-D13S175-D13S143, и его последующее «размывание» за счет рекомбинационных и мутационных событий на протяжении большого числа поколений, представляется вполне вероятным. Однако отсутствие статистически значимой ассоциации наиболее частого аллеля 130 (D13S143) с предковым гаплотипом послужило основанием для исключения D13S143 из числа маркеров, по которым рассчитывали число поколений (табл. 6).

После начала дивергенции предкового гаплотипа с мутацией с.35delG в популяциях Волго-Уральского региона, прошло от 133 до 470 поколений (в среднем, 301 поколение). При оценке возраста (в годах) предкового гаплотипа, реконструированного на территории Волго-Уральского региона, продолжительность жизни одного поколения, как и в других работах, считали равной 25 годам (табл. 6).

Таблица 6. Число поколений, прошедших с момента распространения мутации c.35delG в Волго-Уральском регионе

Маркер	Число поколений с момента появ- ления мутации в популяции, q	Число лет с начала экспансии	Начало экспансии, год до н.э.	
D13S175 (аллель 105)	470	11800	9800	
D13S141 (аллель 125)	133	3300	1300	
Среднее значение	301	7500	5500	

Таким образом, время, за которое произошла экспансия хромосом, несущих мутацию c.35delG, в популяциях Волго-Уральского региона находится в интервале от 3300 до 11800 лет (среднее значение ~ 7500). Однако подобная оценка числа поколений (на основании физического расстояния) часто приводит к завышенному «возрасту» мутации, поскольку учитывается не наблюдаемое, а вероятное значение мутационных событий. Поэтому при таком подходе предпочитают ориентироваться не на средние значения, а выбирают наиболее удаленный, но еще сцепленный с локусом заболевания маркер, так называемую границу стабильного гаплотипа [47]. В рассмотренном случае это маркер D13S175. Если предположить, что число поколений, рассчитанное по данному маркеру, более точное, то наиболее вероятное время экспансии гаплотипа-основателя с мутацией c.35delG в популяциях Волго-Уральского региона составляет ~ 11800 лет. Такая датировка начала экспансии c.35delG в Волго-Уральском регионе соответствует результатам, полученным в исследованиях, выполненных с использованием различных ДНК-маркеров (SNP- и STR-маркеры) в других популяциях Евразийского континента (10000-14000 лет назад) [9-12].

Результаты гаплотипического анализа, оценка «возраста» мутации с.35delG и данные о понижающем градиенте ее частоты в направлении юг—север в популяциях Европы позволили рассматривать территории Ближнего Востока или Средиземноморья (возможно, современной Греции) как наиболее вероятные центры происхождения с.35delG, откуда вместе с неолитическими миграциями человека она широко распространилась по территории Европы [9–12]. Анализ гаплотипического разнообразия (с исполь-

зованием STR-маркеров) и приблизительная оценка «возраста» мутации с.35delG в Волго-Уральском регионе в целом свидетельствуют в пользу «традиционной» неолитической гипотезы о происхождении и распространенности этой мутации.

Таким образом, учитывая единый временной континуум начала распространения мутации с.35delG в Евразии, полученный при использовании различных систем ДНК-маркеров (SNP- и STR-маркеров), для однозначного ответа о центре происхождения мутации с.35delG необходима оценка мирового гаплотипического разнообразия хромосом с этой мутацией по единой системе ДНК-маркеров.

ЗАКЛЮЧЕНИЕ

Анализ частоты гетерозиготного носительства мутации с.35delG гена GJB2 в популяциях Евразии выявил тенденцию к градиентному понижению частоты с.35delG с запада на восток континента, начиная с популяций Восточной Европы и Волго-Уральского региона, со средними частотами 3.3 и 1.4% соответственно, низкой частотой (0.8-0.9%) в популяциях Центральной Азии, минимальной частотой (0.4%) у якутов в Восточной Сибири и отсутствием с.35delG у алтайцев (Южная Сибирь).

Гаплотипический анализ хромосом с мутацией с.35delG позволил реконструировать предковый гаплотип с этой мутацией и подтвердить единство происхождения большинства изученных мутантных хромосом больных с НСНТ, проживающих на территории Волго-Уральского региона. Датировка времени экспансии носителей мутации с.35delG, полученная нами (11800 лет), в целом соответствует мировым значениям «возраста» этой мутации (10000–14000 лет).

Совокупность полученных данных позволит, возможно, уточнить или пересмотреть существующие представления о центре и времени происхождения мутации с.35delG (GJB2) и о факторах, определяющих ее мировую распространенность. lacktriangle

Работа выполнена при финансовой поддержке гранта РФФИ (№ 09-04-01123-а), Федеральных целевых программ «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг. (№ 16.740.11.0190, 16.740.11.0346) и 2010-2012 гг. (№ 02.740.11.0701), а также при поддержке Министерства образования и науки РФ (госконтракты $\Pi 325$ и $\Pi 601$) и Госконтракта № 16.512.11.2047.

СПИСОК ЛИТЕРАТУРЫ

- 1. Marazita M.L., Ploughman L.M., Rawlings B., Remington E., Arnos K.S., Nance W.E. // Am. J. Med. Genet. 1993. V. 46. N_2 5. P. 486–491.
- 2. van Camp G., Smith R. // 2009. http://webhost.ua.ac.be/hhh/
- 3. Maeda S., Nakagawa S., Suga M., Yamashita E., Oshima A., Fujiyoshi Y., Tsukihara T. // Nature. 2009. V. 458. № 7238. P. 597–602.
- 4. Kikuchi T., Kimura R.S., Paul D.L., Adams J.C. // Anat. Embryol. (Berl.). 1995. V. 191. № 2. P. 101–118.
- 5. Morell R.J., Friderici K.H., Wei S., Elfenbein J.L., Friedman T.B., Fisher R.A. // N. Engl. J. Med. 1998. V. 339. P. 1500–1505.
- 6. van Laer L., Huizing E.H., Verstreken M., van Zuijlen D., Wauters J.G., Bossuyt P.J., van de Heyning P., McGuirt W.T., Smith R.J. // J. Med. Genet. 2001. V. 38. P. 515–518.
- 7. Yan D., Ke X., Blanton S.H., Ouyang X.M., Pandya A., Du L.L., Nance W.E., Liu X.Z. // Hum. Genet. 2003. V. 114. P. 44–50.
- 8. RamShankar M., Girirajan S., Dagan O., Ravi Shankar H.M., Jalvi R., Rangasayee R., Avraham K.B., Anand A. // J. Med. Genet. 2003. V. 40. P. 68.
- 9. Abidi O., Boulouiz R., Nahili H., Ridal M., Noureddine A.M., Tlili A., Rouba H., Masmoudi S., Chafik A., Hassar M., et al. // Genet. Test. Mol. Biomark. 2007. V. 12. № 4. P. 569-574.
- 10. Kokotas H., Grigoriadou M., Villamar M., Giannoulia-Karantana A., del Castillo I., Petersen B.M. // Genet. Test. Mol. Biomark. 2010. V. 14. №2. P. 183–187.
- 11. Najmabadi H., Cucci R., Sahebjam S., Kouchakian N., Farhadi M., Kahrizi K., Arzhangi S., Daneshmandan N., Javan K., Smith R.J.H. // Hum. Mutat. 2002. V. 504. P. 135–138.
- 12. Kokotas H., van Laer L., Grigoriadou M., Ferekidou E., Papadopoulou E., Neou P., Giannoulia-Karantana A., Kandiloros D., Korres S., Petersen M.B. // Am. J. Med. Genet. 2008. V. 146A. P. 2879–2884.
- 13. Brobby G., Müller-Myhsok B., Horstmann R. // N. Engl. J. Med. 1998. V. 338. \mathbb{N}_2 8. P. 548–550.
- 14. Hamelmann C., Amedofu G.K., Albrecht K., Muntau B., Gelhaus A., Brobby G.W., Horstmann R.D. // Hum. Mutat. 2001. V. 18. N_2 1. P. 84–85.
- 15. Anichkina A., Kulenich T., Zinchenko S., Shagina I., Polyakov A., Ginter E., Evgrafov O., Viktorova T., Khusnutdinova E. // Eur. J. Hum. Genet. 2001. V. 9. P. 151.
- 16. Некрасова Н.Ю., Шагина И.А., Петрин А.Н., Поляков А.В. //Мед. генет. 2002. Т. 1. № 6. С. 290–294.
- 17. Зинченко Р.А., Ельчинова Г.И., Барышникова Н.В., Поляков А.В., Гинтер Е.К. // Генетика. 2007. Т. 43. № 9. С. 1246-1254.
- 18. Зинченко Р.А., Зинченко С.П., Галкина В.А. // Генетика. 2003. Т. 39. № 9. С. 1275—1284.
- 19. Осетрова А.А., Шаронова Е.И., Россинская Т.Г., Зинченко Р.А. // Мед. генет. 2010. № 9. С. 30-40.
- 20. Хидиятова И.М., Джемилева Л.У., Хабибуллин Р.М., Хуснутдинова Э.К. // Молекуляр. биология. 2002. Т. 36. № 3. С. 438–441.
- 21. Хуснутдинова Э.К., Джемилева Л.У. // Вест. биотех. физико-хим. биол. 2005. № 1. С. 24–31.
- 22. Джемилева Л.У., Барашков Н.А., Посух О.Л., Хусаинова Р.И., Ахметова В.Л., Кутуев И.А., Тадинова В.Н., Федорова С.А., Хидиятова И.М., Хуснутдинова Э.К. // Мед. генет. 2009. № 8. С. 20–28.
- 23. Джемилева Л.У., Посух О.Л., Тазетдинов А.М., Барашков Н.А., Журавский С.Г., Пониделко С.Н., Маркова Т.Г., Тадинова В.Н., Федорова С.А., Максимова Н.Р. и др. // Генетика. 2009. № 7. С. 982–991.

- 24. Dzhemileva L.U., Barashkov N.A., Posukh O.L., Khusainova R.I., Akhmetova V.L., Kutuev I.A., Gilyazova I.R., Tadinova V.N., Fedorova S.A., Khidiyatova I.M., et al. // J. Hum. Genet. 2010. V. 55. № 11. P. 749–754.
- 25. Posukh O.L., Pallares-Ruiz N., Tadinova V., Osipova L., Claustres M., Roux A.F. // BMC Med. Genet. 2005. V. 6. № 12. P 1–7
- 26. Барашков Н.А., Джемилева Л.У., Федорова С.А., Максимова Н.Р., Хуснутдинова Э.К. // Вест. оторинолар. 2008. № 5. С. 23-28
- 27. Барашков Н.А., Джемилева Л.У., Федорова С.А., Терютин Ф.М., Федорова Э.Е., Гуринова Е.Е., Алексеева С.П., Кононова С.К., Ноговицына А.Н., Хуснутдинова Э.К. // Мед. генет. 2010. Т. 9. № 7. С. 22–33.
- 28. Шокарев Р.А., Амелина С.С., Кривенцова Н.В. // Мед. генет. 2005. Т. 4. № 12. С. 556–567.
- 29. Шокарев Р.А., Амелина С.С., Зинченко Р.А., Ельчинова Г.И., Хлебникова О.О., Близнец Е.А., Тверская С.М., Поляков А.В., Зинченко Р.А. // Мед. генет. 2006. Т. 5. С. 38–43.
- 30. Божкова В.П., Хашаев З.Х., Уманская Т.А. // Биофизика. 2010. Т. 55. № 3. С. 514–525.
- 31. Таварткиладзе Г.А., Поляков А.В., Маркова Т.Г., Лалаянц М.Р., Близнец Е.А. // Вест. оторинолар. 2010. № 3. С. 1–18.
- 32. Тазетдинов А.М., Джемилева Л.У., Хуснутдинова Э.К. // Генетика. 2008. Т. 44. № 6. С. 725–733.
- 33. Denoyelle F., Weil D., Maw M. // Hum. Mol. Genet. 1997. V. 12. N_{2} 6. P. 2173–2177.
- 34. Petrukhin K.E., Speer M.C., Cayanis E., Bonaldo M.F., Tantravahi U., Soares M.B., Fischer S.G., Warburton D., Gilliam T.C., Ott J. // Genomics. 1993. V. 15. № 1. P. 76–85.
- 35. Brown K.A., Janura A., Karbani G., Parrys G., Noble A., Crockford G., Bishop D.T., Newton V.E., Markham A.F., Mueller R.F. // Hum. Mol. Genet. 1996. V. 5. P. 169–173.
- 36. Rothrock C.R., Murgia A., Sartorato E.L., Leonardi E., Wei S., Lebeis S.L., Yu L.E., Elfenbein J.L., Fisher R.A., Friderici K.H. // Hum. Genet. 2003. V. 113. P. 18–23.
- 37. Bengtsson B.O., Thompson G. // Tissue Antigens. 1981. V. 18. P. 356-363.
- 38. Risch N., de Leon D., Ozelius L. // Nat. Genet. 1995. V. 9. \mathbb{N}_2 2. P. 152–159.
- 39. Krawczak M., Konecki D.S., Schmidtke I. // Hum. Genet. 1988. V. 80. P. 78–80.
- 40. Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987. 275 p.
- 41. Petersen M., Willems P. // Clin. Genet. 2006. V. 69. P. 371-392.
- 42. Gasparini P., Rabionet R., Barbujani G., Melchionda S., Petersen M., Brondum-Nielsen K., Metspalu A., Oitmaa E., Pisano M., Fortina P., et al. // Eur. J. Hum. Genet. 2000. V. 8. № 1. P. 19–23.
- 43. Lucotte G. // Int. J. Pediatr. Otorhinolaryngol. 2007. V. 71. P. 741–746.
- 44. Mahdieh N., Rabbani B. // Int. J. Audiol. 2009. V. 48. P. 363–370.
- 45. Shahin H., Walsh T., Sobe T., Lynch E., 'King M.-C., Avraham K.B., Kanaan M. // Hum. Genet. 2002. V. 110. P. 284-289.
- 46. Belguith H., Hajji S., Salem N., Charfeddine I., Lahmar I., Amor M.B., Ouldim K., Chouery E., Driss N., Drira M., et al. // Clin. Genet. 2005. V. 68. P. 188–189.
- 47. Slatkin M., Rannala B. // Annu. Rev. Genomics Hum. Genet. 2000. V. 1. P. 225-249.