УДК 577.152.41

Сульфоксиды — аналоги *L*-метионина и *L*-цистеина как пролекарства против грамположительных и грамотрицательных бактерий

Н. В. Ануфриева¹, Е. А. Морозова¹, В. В. Куликова¹, Н. П. Бажулина¹, И. В. Манухов², Д. И. Дёгтев², Е. Ю. Гнучих², А. Н. Родионов¹, Г. Б. Завильгельский², Т. В. Демидкина^{1*} ¹Институт молекулярной биологии им. В.А. Энгельгардта РАН, 119991, Москва, ул. Вавилова, 32

²Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов, 117545, Москва, 1-й Дорожный пр-д, 1 *E-mail: tvd@eimb.ru, tvdemidkina@yandex.ru

Поступила в редакцию 31.08.2015

РЕФЕРАТ Проблема резистентности бактерий к антибиотикам требует разработки новых классов антимикробных препаратов широкого спектра действия. Концепция пролекарств позволяет искать новые подходы к получению эффективных препаратов с улучшенными фармакокинетическими и фармакодинамическими свойствами. Известно, что антимикробной активностью обладают тиосульфинаты, образующиеся ферментативно из сульфоксидов аминокислот при разрушении клеток растений рода *Allium*. Неустойчивость и высокая реакционная способность тиосульфинатов затрудняют их использование как индивидуальных соединений. Предложена фармакологически комплементарная пара: пролекарство – сульфоксид аминокислоты и витамин В6-зависимая метионин–γ-лиаза (МГЛ), метаболизирующая его в организме пациента. Фермент катализирует реакции γ- и β-элиминирования сульфоксидов – аналогов *L*-метионина и *L*-цистеина с образованием тиосульфинатов. Нами клонирован ген МГЛ из *Clostridium sporogenes*. Методом логнормального разложения спектра холофермента установлены ионные и таутомерные формы внутреннего альдимина МГЛ, получены каталитические параметры рекомбинантного фермента в реакциях γ- и β-элиминирования аминокислот и ряда сульфоксидов. Установлена возможность использования витамин B6-зависимой МГЛ для эффективной конверсии сульфоксидов, выявлена антимикробная активность тиосульфинатов в отношении грамположительных и грамотрицательных бактерий *in situ*.

КЛЮЧЕВЫЕ СЛОВА пролекарства, витамин В6-зависимые ферменты, клонирование гена метионин-ү-лиазы из Clostridium sporogenes, аллиин, аллицин, сульфоксиды аминокислот, грамположительные и грамотрицательные бактерии.

СПИСОК СОКРАЩЕНИЙ ПЛФ – пиридоксаль-5'-фосфат; МГЛ – метионин-γ-лиаза; His-tag – полигистидиновый фрагмент; His-tag МГЛ – метионин-γ-лиаза с полигистидиновым фрагментом; megL – ген, кодирующий МГЛ Clostridium sporogenes; ДТТ – дитиотреитол; NADH – β-никотинамидадениндинуклеотид восстановленный; EDTA – этилендиаминтетрауксусная кислота.

ВВЕДЕНИЕ

Проблема поиска новых антимикробных препаратов с минимальным риском индукции быстрой устойчивости к антибиотикам весьма остро стоит в настоящее время. Многие потенциально эффективные антимикробные средства достаточно быстро деградируют в организме человека и обладают повышенной токсичностью, что затрудняет их применение в концентрации, нужной для терапии. Эту проблему можно решить с помощью концепции пролекарств – препаратов, которые должны подвергнуться метаболизму в организме пациента. Эту концепцию успешно применили в противоопухолевой терапии [1].

В представленной работе предложено использовать этот подход для создания эффективной антимикробной терапии с помощью фармакологической пары: пролекарство и биокатализатор, его метаболизирующий. Недавно мы показали, что метионин-γлиаза (МГЛ) [КФ 4.4.1.11] из *Citrobacter freundii* катализирует реакцию β-элиминирования небелковой аминокислоты, (±)-сульфоксида S-(2-пропенил)-*L*цистеина ((±)-аллиина), с образованием 2-пропентиосульфината (аллицина) – природного антибиотика [2]. МГЛ катализирует реакцию γ -элиминирования L-метионина с образованием метилмеркаптана, α -кетомасляной кислоты и аммиака. Фермент катализирует реакцию β -элиминирования L-цистеина и его S-замещенных производных с образованием соответствующих меркаптанов, пировиноградной кислоты и аммиака и реакции замещения у С $_{\beta}$ - и С $_{\gamma}$ атомов L-цистеина и L-метионина и их аналогов [3, 4]:

МГЛ содержится в грибах [5], Arabidopsis thaliana [6], в различных видах бактерий, в том числе в патогенных Aeromonas spp. [7], Clostridium sporogenes [8], Porphyromonas gingivalis [9] и в патогенных простейших Entamoeba histolytica [10] и Trichomonas vaginalis [11]. Фермент отсутствует у млекопитающих, поэтому может рассматриваться как мишень в патогенах. Такой подход применили с использованием суицидального субстрата фермента. Катализ реакции ү-элиминирования трифторметионина приводил к образованию трифтормеркаптана, спонтанно разлагающегося до дифторида тиоугольной кислоты, который обладает антимикробной активностью в отношении содержащих МГЛ T. vaginalis [12], P. gingivalis [13], E. histolytica [14]. Однако высокая токсичность дифторида тиоугольной кислоты не позволяет использовать трифторметионин как антимикробное средство.

Аллицин, наиболее известный антимикробный и противоопухолевый компонент чеснока, составляет около 70% от общего количества тиосульфинатов [15], образующихся в результате реакции β -элиминирования аллиина, катализируемой ПЛФзависимой аллииназой [КФ 4.4.1.4] [16] при разрушении чеснока. Антимикробное действие аллицина и других тиосульфинатов, образующихся ферментативно при разрушении клеток растений рода Allium, во многом объясняется тем, что они окисляют сульфгидрильные группы белков/ферментов бактериальных клеток, в то время как клетки животных частично защищены присутствующим в них глутатионом [17]. Противомикробные, противовоспалительные, антиоксидантные и антиканцерогенные эффекты органических сульфосоединений, экстрактов клеток чеснока и лука [18, 19] известны с древнейших времен. Однако отдельные тиосульфинаты не используются в медицине из-за их высокой реакционной способности и, как следствие, неустойчивости. Как индивидуальное биологически активное соединение, наиболее подробно изучен только аллицин, обнаружены его противоопухолевые, антиоксидантные, антибактериальные и противогрибковые свойства [20–22].

Способность МГЛ катализировать реакции γ и β -элиминирования сульфоксида метионина [23] и аллиина [2] с образованием тиосульфинатов позволяет применить концепцию пролекарств для разработки нового антимикробного препарата, используя в качестве пролекарств аллиин и другие субстратысульфоксиды как источники тиосульфинатов *in situ*.

Ранее мы клонировали ген (megL) С. sporogenes, кодирующий МГЛ с полигистидиновым фрагментом (His-tag) на N-конце полипептидной цепи, определили некоторые кинетические характеристики рекомбинантного фермента (His-tag МГЛ). МГЛ С. sporogenes катализировала реакцию γ-элиминирования L-метионина с большей скоростью, чем фермент из С. freundii [24], и обладала лучшей цитостатической активностью в отношении ряда опухолевых клеток [25].

Скорость расщепления физиологического субстрата С. sporogenes МГЛ возрастала в 1.5 раза после отщепления His-tag тромбином. В данной работе мы клонировали ген МГЛ С. sporogenes без His-tag. Определены стационарные кинетические параметры реакций γ-и β-элиминирования ряда известных субстратов и сульфоксидов - аналогов цистеина и метионина и спектральные характеристики C. sporogenes МГЛ. На твердой среде показана антибактериальная активность смесей, содержащих МГЛ из C. sporogenes и C. freundii и сульфоксиды аминокислот. Установлено, что кинетические параметры рекомбинантной ПЛФ-зависимой МГЛ делают принципиально возможным использование фермента в конверсии пролекарств - сульфоксидов аминокислот - в тиосульфинаты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы, ферменты

В работе использовали: пиридоксаль-5'-фосфат, *L*-метионин, *L*-цистеин, *L*-гомоцистеин, *L*-норвалин, L-норлейцин, L-α-аминомасляную кислоту, аллиин, S-этил-L-цистеин, S-этил-L-гомоцистеин, L-аланин, О-ацетил-L-серин, лактатдегидрогеназу из мышцы кролика, ДТТ, NADH, периодат натрия, этилбромид (Sigma, США); ЕDTA, протаминсульфат (Serva, США); лактозу (Panreac, Испания); глюкозу, глицерин, сульфат магния, сульфат аммония, калий фосфорнокислый однозамещенный, натрий фосфорнокислый двузамещенный («Реахим», Россия); дрожжевой экстракт, триптон (Difco, США); DEAE-ceфaposy (GE Healthcare, Швеция); О-ацетил-L-гомосерин получен ацетилированием *L*-гомосерина по описанному ранее методу [26]. 2-Нитро-5-тиобензойная кислота получена согласно [27]. (±)-Сульфоксид L-метионина получали по стандартной методике [28]. Синтез (±)-сульфоксидов S-этил-L-цистеина и S-этил-L-гомоцистеина проводили согласно [29-31].

Реакции рестрикции и лигирования проводили с использованием ферментов фирмы Promega (США). В работе использовали «рабочий буфер», рН 8.0, содержащий 100 мМ калий-фосфат, 0.1 мМ ПЛФ, 1 мМ ДТТ и 1 мМ ЕDTА.

Штамм Escherichia coli BL21(DE3) F⁻ отрТ hsdS_B gal dcm (DE3) (Novagen) был использован для экспрессии гена C. sporogenes MГЛ. Штамм E. coli K12 AB2463 – recA⁻ производное штамма E. coli K12, имеет генотип: F⁻, thr-1 leu-6 proA2 his-4 thi-1 argE3 lacY1 galK2 ara-14 xyl-5 mtl-1 tsx-33 rpsL31 supE44, recA13. Его использовали для клонирования, наработки и хранения плазмиды. Штамм C. freundii ATCC 21434 из American Type Culture Collection (США) любезно предоставлен P.C. Филлипсом. Штамм 015 Staphylococcus aureus любезно предоставлен Ю.Ф. Белым. Плазмида с геном D-2гидроксиизокапроатдегидрогеназы любезно предоставлена К. Мураторе.

Клонирование гена МГЛ из C. sporogenes

Плазмида pET28a-megL_sporog сконструирована на основе плазмиды pET28a, содержащей ген megL *C. sporogenes* с полигистидиновым фрагментом (Histag) и обозначена как pET-28a::megL_s_HT [24]. Методом ПЦР получен ампликон (megL_sporog), содержащий ген megL без His-tag. В качестве матрицы использовали плазмиду pET28a, содержащую ген megL с His-tag. В праймерах был предусмотрен сайт рестрикции NcoI (подчеркнут): megL_sporog:5'-CGC-GCGGCAGCC<u>CCATGG</u>AGAA-3' (прямой), megL_ sporog: 5'-CCGGATCTCAGTGGTGGTGGTG-3' (обратный).

Ампликон *megL_sporog* клонировали в векторе pET28a по сайтам NcoI и EcoRI в *recA⁻* штамме *E. coli* AB2463. Контроль клонирования осуществляли путем секвенирования вставки. Трансформацию проводили, используя штамм *E. coli* BL21(DE3).

Выращивание биомассы и выделение фермента

Клетки E. coli BL21(DE3), содержащие ген МГЛ без His-tag в плазмиде pET28a megL sporog, выращивали на «индуцирующей» среде [32] при 37°С с перемешиванием (180 об/мин) в течение 24 ч. Клетки собирали центрифугированием и хранили при -80°С. Клетки разрушали и освобождали от нуклеиновых кислот как описано ранее [33]. Далее очистку проводили с использованием ионообменной хроматографии на колонке с DEAE-сефарозой, уравновешенной рабочим буфером. Колонку промывали рабочим буфером, содержащим 100 мМ КСІ. Фермент элюировали рабочим буфером, содержащим 500 мМ KCl, концентрировали и диализовали против рабочего буфера. Чистоту препарата проверяли при помощи ПААГ-электрофореза в денатурирующих условиях по методу Лэммли [34]. Концентрацию очищенных препаратов определяли, используя коэффициент $A_{10}^{278} = 0.8$ [23].

Определение активности фермента и параметров стационарной кинетики

Активность МГЛ в процессе очистки определяли в реакциях γ- и β-элиминирования, измеряя скорости образования кетокислот в сопряженной реакции с *D*-2-гидроксиизокапроатдегидрогеназой (реакция ү-элиминирования) или лактатдегидрогеназой (реакция β-элиминирования) по снижению поглощения NADH при 340 нм (ε = 6220 М⁻¹см⁻¹) и 30°С. Реакционные смеси содержали рабочий буфер, 0.2 мМ NADH, 10 ед. лактатдегидрогеназы или 70 мкг D-2-гидроксиизокапроатдегидрогеназы, 30 мМ S-этил-L-цистеина или 30 мМ L-метионина. За единицу ферментативной активности принимали количество фермента, катализирующее образование 1.0 мкМ/мин пирувата (или α-кетобутирата). Удельная активность препаратов фермента, имеющих 95% чистоты, составила 26.8 ед./мг в реакции ү-элиминирования *L*-метионина и 8.32 ед./мг в реакции β-элиминирования S-этил-*L*-цистеина.

Стационарные кинетические параметры реакций γ - и β -элиминирования определяли таким же образом, варьируя концентрации субстратов. Полученные данные обрабатывали согласно уравнению Михаэлиса-Ментен с использованием программы EnzFitter. В расчетах использовали величину молекулярной массы субъединицы фермента, равную 43 кДа. Ингибирование реакции γ -элиминирования *L*-метионина различными аминокислотами изучали в условиях, описанных выше, варьируя концентрацию субстратов и ингибиторов в реакционных смесях. Значения констант ингибирования определяли с помощью программы EnzFitter. Данные обрабатывали в координатах Диксона [35].

Спектральные исследования

Спектр поглощения холофермента регистрировали при 25°С на спектрофотометре Cary-50 (Varian, США) в рабочем буфере без ПЛФ. Концентрация фермента – 1.036 мг/мл.

Антимикробная активность препаратов

Ночные культуры C. freundii и S. aureus, выращенные на среде Лурия-Бертани (LB-среда) при 37°С, разводили в 100 раз в среде LB и растили при 37°С при перемешивании до оптической плотности 0.2-0.3 при 600 нм. Культуры бактерий рассевали на чашки с твердой средой (LB-arap). Смеси МГЛ из разных источников и сульфоксидов аминокислот, предварительно инкубированные при комнатной температуре в течение 1 ч, наносили на диски из фильтровальной бумаги диаметром 12 мм, помещенные на чашки. Концентрации МГЛ из C. sporogenes и C. freundii и сульфоксидов составляли 10 и 2.5 мг/мл соответственно. Чашки инкубировали в течение 24 ч при 37°С, затем измеряли зоны ингибирования. Контрольные препараты растворов смесей фермента с сульфоксидами сохраняли антибактериальную активность в течение 2 недель.

Определение аллицина

Аллицин, образующийся в смесях, содержащих МГЛ и аллиин, определяли в реакции с 2-нитро-5тиобензойной кислотой. Смесь МГЛ и аллиина добавляли к 1 мл 0.1 мМ 2-нитро-5-тиобензойной кислоты в 100 мМ калий-фосфатном буфере, содержащем 0.2 мМ ПЛФ, рН 8.0. Смесь инкубировали в течение 30 мин при комнатной температуре. Молярную концентрацию аллицина рассчитывали по уменьшению оптической плотности при 412 нм, используя значение молярного коэффициента поглощения 2-нитро-5-тиобензойной кислоты при 412 нм, равное 28300 М⁻¹см⁻¹ [27].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кинетические параметры реакций β- и γ-элиминирования

Ранее [25] мы определили, что отщепление тромбином His-tag от МГЛ *C. sporogenes* приводит к повышению в 1.5 раза активности фермента в физиологической реакции с *L*-метионином. В данной работе определены параметры стационарной кинетики МГЛ *C. sporogenes* без His-tag в реакции γ -элиминирования пяти субстратов – *L*-метионина, сульфоксида *L*-метионина, S-этил-*L*-гомоцистеина, сульфоксида S-этил-L-гомоцистеина и O-ацетил-L-гомосерина, в реакции β-элиминирования четырех субстратов – S-этил-L-цистеина, сульфоксида S-этил-L-цистеина, O-ацетил-L-серина и аллиина. В *табл.* 1 приведены параметры для МГЛ из C. sporogenes, для МГЛ из двух других бактериальных источников и His-tag МГЛ C. sporogenes.

У МГЛ С. sporogenes параметр $k_{\rm кат}$ в реакции γ -элиминирования трех субстратов – L-метионина, S-этил-L-гомоцистеина и сульфоксида L-метионина, оказался в 2–3 раза больше, чем у His-tag МГЛ С. sporogenes. Величины $K_{\rm M}$ для первых двух субстратов оказались близкими, в случае сульфоксида L-метионина величина $K_{\rm M}$ была несколько больше, чем у His-tag МГЛ.

Фрагмент His-tag не влияет на кинетические параметры реакции β-элиминирования S-этил-Lцистеина, величины $k_{_{\!\rm KAT}}$ и $K_{_{\!\rm M}}$ у МГЛ практически такие же, как у His-tag МГЛ. Катализ стадии элиминирования боковой группы субстрата в реакциях γ- и β-элиминирования осуществляется разными кислотными группами фермента. Предполагается, что в реакции β-элиминирования, катализируемой ПЛФ-зависимыми лиазами, такой группой является боковая группа остатка лизина (Lys210 в С. freundii МГЛ), связывающего кофермент [36]. В ПЛФ-зависимых реакциях у-элиминирования и ү-замещения эта роль приписывается консервативному остатоку тирозина (Tyr113 в C. freundii МГЛ), находящемуся в стекинг-взаимодействии с кольцом кофермента [36]. Это предположение подтверждают данные для мутантной формы МГЛ Pseudomonas putida с заменой Tyr114 на Phe [37]. Получены также свидетельства того, что кислотноосновные свойства Туг113 МГЛ С. freundii регулируются триадой Cys115/Tyr113/Arg60 [2]. Arg60 расположен в подвижной N-концевой петле фермента, и атом азота гуанидиновой группы находится на расстоянии водородной связи от гидроксильной группы Tyr113 в трехмерной структуре холофермента [38], в структурах комплексов МГЛ с аминокислотами, моделирующими комплекс Михаэлиса [39], и в пространственной структуре внешнего альдимина фермента с глицином [40]. Фрагмент His-tag может влиять на конформацию N-концевой петли и, следовательно, на взаимное расположение гидроксильной группы Tyr113 и гуанидиновой группы Arg60, что, в свою очередь, может влиять на величину рК_ гидроксильной группы Туг113. Возможно, этим объясняется увеличение ү-элиминирующей активности МГЛ С. sporogenes по сравнению с Histag МГЛ.

Сравнение ферментов из трех бактериальных источников (*табл.* 1) – *P. putida*, *C. freundii* и *C. spo*-

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Субстрат	MГЛ C. sporogenes			His-tag МГЛ C. sporo- genes**			МГЛ C. freundii***			МГЛ P. putida****		
	$egin{array}{c} k_{_{\scriptscriptstyle \mathrm{KaT,}}} \ \mathrm{c}^{_{-1}} \end{array}$	<i>К</i> _{м.} мМ	$k_{\mathrm{Kat}}/K_{\mathrm{M},\mathrm{M}^{-1}\mathrm{C}^{-1}}$	$k_{\scriptscriptstyle \mathrm{Kat},\atop \mathrm{C}^{-1}}$	К _{м.} мМ	$k_{_{ m KaT}}/K_{_{ m M,}} M^{-1}{ m c}^{-1}$	$egin{array}{c} k_{_{\scriptscriptstyle \mathrm{KAT,}}} \ \mathrm{c}^{^{-1}} \end{array}$	<i>К</i> _{м.} мМ	$k_{_{\scriptscriptstyle \mathrm{KaT}}}/K_{_{\scriptscriptstyle \mathrm{M},}} M^{-1}\mathrm{c}^{-1}$	$egin{array}{c} k_{_{\!$	К _{м.} мМ	$k_{_{ m \tiny KaT}}/K_{_{ m M,}} \ { m M}^{-1}{ m c}^{-1}$
L-Met	21.61	0.60	3.60×10^{4}	9.86	0.43	2.28×10^{4}	6.2	0.7	8.85×10^{3}	48.6	0.90	$5.4 imes 10^4$
(±)-L-MetO	21.66	11.39	1.90×10^{3}	8.59	7.89	1.09×10^{3}	8.12	4.65	1.75×10^{3}	-	-	-
S-Et-L-Hcy	21.31	0.24	8.87×10^{4}	7.05	0.27	2.54×10^4	6.78	0.54	$1.25 imes 10^4$	33.4	0.27	$1.23 imes 10^5$
(±)-S-Et-L-HcyO	0.48	0.60	8.0×10^{2}	-	-	-	-	-	-	-	-	-
O-Ac-L-Hse	37.26	3.18	1.17×10^{4}	-	-	-	2.1	2.91	$7.21 imes 10^2$	78.0	2.22	3.51×10^4
S-Et-L-Cys	6.53	0.43	1.52×10^{4}	6.3	0.358	1.76×10^{4}	5.03	0.17	$2.96 imes 10^4$	5.79	0.48	$1.21 imes 10^4$
(±)-S-Et-L-CysO	1.39	0.33	4.21×10^{3}	-	-	-	-	-	-	-	-	-
O-Ac-L-Ser	5.31	8.01	$6.6 imes 10^{2}$	-	-	-	2.13	4.28	4.98×10^{2}	-	-	-
(±)-Аллиин	11.43	1.43	7.99×10^{3}	-	-	-	5.9	4.7	1.26×10^{3}	-	-	-

Таблица 1. Кинетические параметры реакций ү- и β -элиминирования*

*Ошибка не превышала 10%.

Данные [25]. *Данные [2

***Данные [2, 23, 33].

****Данные [37].

rogenes, показало, что сродство как к физиологическому субстрату, так и к его аналогам практически одинаково. Каталитические эффективности реакции γ -элиминирования *L*-метионина у МГЛ *C. sporo*genes и *P. putida* близки, а величина $k_{\rm кат}/K_{\rm M}$ у МГЛ *C.* freundii несколько меньше. Кинетические параметры реакции β -элиминирования S-этил-*L*-цистеина у трех ферментов очень близки.

МГЛ *С. sporogenes* катализирует реакцию γ-элиминирования сульфоксида *L*-метионина с каталитической эффективностью на порядок большей, чем в реакции γ-элиминирования сульфоксида S-этил-*L*гомоцистеина. Скорость реакции β-элиминирования сульфоксида S-этил-*L*-цистеина, катализируемой ферментом, в 15 раз меньше скорости реакции γ-элиминирования сульфоксида *L*-метионина, но за счет большего сродства МГЛ *С. sporogenes* к этому субстрату каталитическая эффективность практически одинакова. В реакциях с сульфоксидами аминокислот наиболее эффективно фермент катализирует реакцию β-элиминирования аллиина. Фермент из C. sporogenes более эффективно катализирует реакцию ү-элиминирования сульфоксида L-метионина, чем МГЛ C. freundii (величины $k_{\rm кат}$ больше в 2.5 раза). Скорость расщепления аллиина МГЛ C. sporogenes почти в 2 раза больше, чем у фермента C. freundii, сродство к субстрату в 3 раза, а эффективность катализа в 6.3 раза выше.

Аминокислоты с неразветвленной боковой цепью ингибировали реакцию ү-элиминирования *L*-метионина по конкурентному типу. В *maбл.* 2 приведены константы ингибирования МГЛ из *C. sporogenes, C. freundii* и *P. putida.* У всех этих ферментов наблюдается улучшение связывания с увеличением количества метиленовых групп в аминокислотах с неразветвленной боковой цепью, что, вероятно, объясняется гидрофобным характером активных центров фермента из *P. putida* [41] и *C. freundii* [38]. Возможно, значительное возрастание сродства при переходе от *L*-норвалина к *L*-норлейцину у фермента из трех источников и близкие значения величин *K*_i *L*-норлейцина и *K*_w для *L*-метионина

Рис. 1. Спектр поглощения холофермента МГЛ *C. sporogenes*

A	$K_{ m i}$, мМ						
Аминокислота	C. freundii**	C. sporogenes	P. putida***				
L-Ala	3.4	1.5	5.1				
<i>L</i> -Abu	8.3	2.0	8.4				
L-Nva	4.7	1.9	3.0				
L-Nle	0.6	0.37	0.5				

*Ошибка не превышала 10%.

**Данные [23].

***Данные [43].

Рис. 2. Диффузия в агаре по методу Кирби–Бауэра [44]. На диск наносили смесь *C. sporogenes* МГЛ (10 мг/мл) и аллиина (2.5 мг/мл) в 100 мМ калий-фосфатном буфере. *А* – культура *C. freundii*. *Б* – культура *S. aureus*

и S-этил-L-цистеина объясняются наличием «кармана» для метильной группы аминокислот в активных центрах МГЛ.

Спектральные характеристики фермента

Спектр поглощения холофермента МГЛ *С. sporogenes* (*puc. 1*) при pH 8.0 сходен со спектром МГЛ *С. freundii* [23] с преобладающей полосой в области 422-425 нм, принадлежащей внутреннему альдимину в форме кетоенамина (*puc. 1*, структура II). Как и у His-tag МГЛ *С. sporogenes* [24], спектр содержит интенсивную полосу поглощения с максимумом в области 502-505 нм, которую в спектрах комплексов ПЛФ-зависимых ферментов с аминокислотами и модельными соединениями приписывают хиноидному интермедиату [42].

Таблица 3. Параметры полос спектра поглощения внутреннего альдимина C. sporogenes МГЛ

Структура	Е, эВ	$\nu imes 10^{-3}$, см ⁻¹	λ, нм	ε × 10 ⁻³ , M ⁻¹ cm ⁻¹	$W imes 10^{-3},$ cm ⁻¹	ρ	f	n, %
II^1	2.92	23.53	425.0	10.46	3.58	1.58	0.22	64.7
$\mathrm{II}^{<}$	3.24	26.15	382.4	7.76	4.00	1.37	0.02	7.5
Ι	3.63	29.28	341.5	9.44	3.65	1.23	0.03	10.0
$\mathrm{II}^{\scriptscriptstyle \perp}$	3.79	30.56	327.2	10.27	3.47	1.29	0.01	5.6
II^{2*}	4.28	34.55	289.4	5.98	5.06	1.20	0.18	
*	4.46	35.99	277.9	6.70	4.70	1.50	0.26	

*Экспериментальная информация об этих полосах недостаточна.

Примечание. *E* – энергия электронного перехода; ν – волновое число; λ – длина волны; ε – коэффициент молярного поглощения; *W* – полуширина; ρ – асимметрия; *f* – сила осциллятора; *n* – содержание таутомеров и конформеров. Содержание ПЛФ в ферменте – 87.8%. Надстрочные индексы (1, 2) относятся к первому и второму электронным переходам структуры II. Надстрочные индексы (⁺, <) относятся к двум конформерам структуры II. Конформер с альдиминной связью, находящейся в плоскости, перпендикулярной плоскости пиридинового цикла, и конформер с альдиминной связью, частично выведенной из плоскости пиридинового кольца, но сохраняющей сопряжение и водородную связь между альдиминным азотом и 3'-оксигруппой кофермента).

G 1	Зона ингибирования, мм ²								
Сульфоксид	МГЛ С.	freundii	МГЛ C. sporogenes						
аминокислоты	C. freundii	S. aureus	C. freundii	S. aureus					
(±)-Аллиин	380	754	254	754					
(\pm) -L-MetO	452	491	177	227					
(\pm) -S-Et-L-CysO	314	491	254	314					
(\pm) -S-Et-L-HcyO	254	415	227	227					

Таблица 4. Ингибирование культур клеток бактерий смесями, содержащими МГЛ и сульфоксиды аминокислот

Разложение спектра холофермента с использованием логнормальных кривых в области 300-500 нм проводили согласно [23]. В табл. 3 приведены параметры полос поглощения, полученные в результате разложения. Внутренний альдимин, помимо кетоенамина (*puc. 1*, структура II, $\varepsilon = 10410 \text{ M}^{-1}\text{c}^{-1}$), описывается минорными структурами, енольным таутомером (*puc.* 1, структура I) и двумя конформерами кетоенамина, с альдиминной связью, перпендикулярной плоскости кольца кофермента (поглощает в области 380 нм), и с альдиминной связью, частично выведенной из плоскости кольца, но сохраняющей сопряжение с л-электронами кофактора и водородную связь между альдиминным азотом и 3'-оксигруппой ПЛФ (поглощает в области 327-328 нм). Ионная форма внутреннего альдимина и таутомерное равновесие практически такие же, как у МГЛ C. freundii. Идентификация поглощения в области 502-505 нм нуждается в дополнительных исследованиях.

Антимикробная активность смесей МГЛ C. freundii и C. sporogenes с сульфоксидами аминокислот

Антибактериальная активность смесей МГЛ из двух источников с сульфоксидами аминокислот проверена на культурах бактерий – грамположительной *S. aureus* и грамотрицательной *C. freundii* (*maбл. 4*). Все смеси показали бактериостатический эффект в отношении грамположительных и грамотрицательных бактерий. Наиболее значительный эффект наблюдали для культуры *S. aureus* (*puc. 2*). Бактериостатический эффект был сравним с ингибированием роста бактериальных клеток канамицином. Зоны ингибирования канамицином (0.05 мг) и смесью, содержавшей 0.04 мг аллицина, на культуре *C. freundii* составили 314 и 346 мм².

Таким образом, полученные данные показали, что клонированный фермент эффективно катализирует конверсию сульфоксидов аминокислот в тиосульфинаты. Это позволяет предположить, что фармакологическая пара МГЛ и сульфоксид может обеспечить образование тиосульфинатов в количествах, достаточных для терапевтических целей.

выводы

МГЛ катализирует реакции γ- и β-элиминирования сульфоксидов – аналогов метионина и цистеина – с каталитическими эффективностями, сравнимыми с эффективностями реакций γ- и β-элиминирования этих аминокислот.

На твердой среде показано, что смеси МГЛ с сульфоксидами перспективны как антимикробные средства против грамположительных и грамотрицательных бактерий *in situ*.

Наибольший бактериостатический эффект смеси МГЛ с сульфоксидами аминокислот оказывают на грамположительную бактерию *S. aureus*, и бактериостатический эффект аллицина, полученного *in situ*, сравним с эффектом канамицина. •

Авторы благодарят Государственный научноисследовательский институт генетики и селекции промышленных микроорганизмов за предоставленную возможность клонирования гена метионин-у-лиазы из Clostridium sporogenes.

Работа поддержана Российским научным фондом (проект № 15-14-00009).

СПИСОК ЛИТЕРАТУРЫ

1. Wentworth P., Datta A., Blakey D., Boyle T., Partridge L.J., Blackburn G.M. // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 799-803.

- 3. Tanaka H., Esaki N., Soda K. // Enzyme Microb. Technol. 1985. V. 7. P. 530–537.
- 4. Фалеев Н.Г., Троицкая М.В., Ивойлов В.С., Карпова В.В., Беликов В.М. // Прикладная биохимия и микробиология. 1994. Т. 30. № 3. С. 458–463.
- 5. El-Sayed A.S. // Appl. Microbiol. Biotechnol. 2010. V. 86. P. 445–467.

^{2.} Morozova E.A., Revtovich S.V., Anufrieva N.V., Kulikova V.V., Nikulin A.D., Demidkina T.V. // Acta Crystallogr. D. Biol. Crystallogr. 2014. V. 70. № 11. P. 3034–3042.

- 6. Goyer A., Collakova E., Shachar-Hill Y., Hanson A.D. // Plant Cell Physiol. 2007. V. 48. P. 232–242.
- 7. Nakayama T., Esaki N., Lee W.-J., Tanaka I., Tanaka H., Soda K. // Agric. Biol. Chem. 1984. V. 48. P. 2367–2369.
- 8. Kreis W., Hession C. // Cancer Res. 1973. V. 33. P. 1862-1865.
- 9. Yoshimura M., Nakano Y., Yamashita Y., Oho T., Saito T.,
- Koga T. // Infection Immunity. 2000. V. 68. P. 6912–6916. 10. Tokoro M., Asai T., Kobayashi S., Takeuchi T., Nozaki T. // J. Biol. Chem. 2003. V. 278. P. 42717–42727.
- 11. Lockwood B., Coombs G. // Biochem. J. 1991. V. 279. P. 675–682.
- 12. Coombs G.H., Mottram J.C. // Antimicrob. Agents Chemother. 2001. V. 45. P. 1743–1745.
- 13. Yoshimura M., Nakano Y., Koga T. // Biochem. Biophys. Res. Commun. 2002. V. 292. P. 964–968.
- 14. Sato D., Kobayashi S., Yasui H., Shibata N., Toru T., Yamamoto M., Tokoro G., Ali V., Soga T., Takeuchi T., Suematsu M., Nozaki T. // Int. J. Antimicrob. Agents. 2010. V. 35. № 1. P. 56–61.
- 15. Han J., Lawson L., Han G., Han P. // Anal. Biochem. 1995. V. 225. P. 157–160.
- 16. Stoll A., Seebeck E. // Adv. Enzymol. 1951. V. 11. P. 377-400.
- Rabinkov A., Miron T., Konstantinovski L., Wilchek M., Mirelman D., Weiner L. // Biochim. Biophys. Acta. 1998. V. 1379. P. 233-244.
- 18. Rose P., Whiteman M., Moore P.K., Zhu Y.Z. // Nat. Prod. Rep. 2005. V. 22. P. 351–368.
- 19. Lynett P.T., Butts K., Vaidya V., Garrett G.E., Pratt D.A. // Org. Biomol. Chem. 2011. V. 9. P. 3320–3330.
- 20. Hirsch K., Danilenko M., Giat J., Miron T., Rabinkov A., Wilchek M., Mirelman D., Levy J., Sharoni Y. // Nutr. Cancer. 2000. V. 38. P. 245–254.
- 21. Shadkchan Y., Shemesh E., Mirelman D., Miron T., Rabinkov A., Wilchek M., Osherov N. // J. Antimicrob. Chemother. 2004. V. 53. P. 832–836.
- 22. Curtis H., Noll U., Störmann J., Slusarenko A.J. // Physiol. Mol. Plant Pathol. 2004. V. 65. P. 79–89.
- 23. Морозова Е.А., Бажулина Н.П., Ануфриева Н.В., Мамаева Д.В., Ткачев Я.В., Стрельцов С.А., Тимофеев В.П., Фалеев Н.Г., Демидкина Т.В. // Биохимия. 2010. Т. 75. С. 1272–1280.
- 24. Ревтович С.В., Морозова Е.А., Ануфриева Н.В., Котлов М.И., Белый Ю.Ф., Демидкина Т.В. // ДАН. 2012. Т. 445. С. 187–193.
- 25. Морозова Е.А., Куликова В.В., Яшин Д.В., Ануфриева Н.В.,

Анисимова Н.Ю., Ревтович С. В., Котлов М.И., Белый Ю.Ф., Покровский В.С., Демидкина Т.В. // Acta Naturae. 2013. Т. 5. № 3 (18). С. 96–102.

- 26. Nagai S., Flavin M. // J. Biol. Chem. 1967. V. 242. P. 3884-3895.
- 27. Miron T., Rabinkov A., Mirelman D., Weiner L., Wilchek M. // Anal. Biochem. 1998. V. 265. P. 317–332.
- 28. Mitsudome T., Takahashi Y., Mizugaki T., Jitsukawa K., Kaneda K. // Angew. Chem. Int. Ed. Engl. 2014. V. 53. № 32. P. 8348–8351.
- 29. Frankel M., Gertner D., Jacobson H., Zilkha A. // J. Chem. Soc. 1960. P. 1390–1393.
- 30. Briggs W.H., Xiao H., Parkin K.L., Shen C., Goldman I.L. // J. Agricult. Food Chem. 2000. V. 48. № 11. P. 5731–5735.
- 31. Waelsch H., Owades P., Miller H.K., Borek E. // J. Biol. Chem. 1946. V. 166. P. 273–281.
- 32. Studier F.W. // Protein Expr. Purif. 2005. V. 41. P. 207-234.
- 33. Манухов И.В., Мамаева Д.В., Морозова Е.А., Расторгуев С.М., Фалеев Н.Г., Демидкина Т.В., Завильгельский Г.Б. // Биохимия. 2006. V. 71. Р. 454–463.
- 34. Laemmli U.K. // Nature. 1970. V. 227. P. 680-685.
- 35. Dixon M. // Biochem. J. 1953. V. 55. P. 170-171.
- 36. Clausen T., Huber R., Laber B., Pohlenz H.D., Messerschmidt A. // J. Mol. Biol. 1996. V. 262. P. 202–224.
- 37. Inoe H., Inagaki K., Adachi N., Tamura T., Esaki N., Soda K., Tanaka H. // Biosci. Biotechnol. Biochem. 2000. V. 64. P. 2336–2343.
- Nikulin A., Revtovich S., Morozova E., Nevskaya N., Nikonov S., Garber M., Demidkina T. // Acta Crystallography, Section D. 2008. V. 64. P. 211–218.
- 39. Ревтович С.В., Морозова Е.А., Хурс Е.Н., Закомырдина Л.Н., Никулин А.Д., Демидкина Т.В., Хомутов Р.М. // Биохимия. 2011. Т. 76. С. 690–698.
- 40. Revtovich S.V., Faleev N.G., Morozova E.A., Anufrieva N.V., Nikulin A.D., Demidkina T.V. // Biochimie. 2014. V. 101. P. 161–167.
- 41. Motoshima H., Inagaki K., Kumasaka T., Furuichi M., Inoue H., Tamura T., Esaki N., Soda K., Tanaka N., Yamamoto M., et al. // J. Biochem. 2000. V. 128. P. 349–354.
- 42. Metzler C.M., Harris A.G., Metzler D.E. // Biochemistry. 1988. V. 27. P. 4923–4933.
- 43. Esaki N., Nakayama T., Sawada S., Tanaka H., Soda K. // Biochemistry. 1985. V. 24. P. 3857–3862.
- 44. Bauer A.W., Kirb W.M.M., Sherris J.C., Turck M. // Am. J. Clin. Pathol. 1966. V. 36. P. 493–496.