УДК 577.1

Биосинтез сополимера поли-3-оксибутират-со-3-окси-4метилвалерата штаммом *Azotobacter* chroococcum 7Б

```
А. П. Бонарцев<sup>1,2*</sup>, Г. А. Бонарцева<sup>2</sup>, В. Л. Мышкина<sup>2</sup>, В. В. Воинова<sup>1</sup>, Т. К. Махина<sup>2</sup>,
И. И. Жаркова<sup>1</sup>, С. Г. Яковлев<sup>2</sup>, А. Л. Зернов<sup>1</sup>, Э. В. Иванова<sup>1</sup>, Е. А. Акулина<sup>2</sup>,
Е. С. Кузнецова<sup>1</sup>, В. А. Жуйков<sup>2</sup>, С. Г. Алексеева<sup>3</sup>, В. В. Подгорский<sup>4</sup>, И. В. Бессонов<sup>5</sup>,
M. H. Копицына<sup>5</sup>, A. C. Морозов<sup>5</sup>, Е. Ю. Милановский<sup>6</sup>, З. H. Тюгай<sup>6</sup>, Г. С. Быкова<sup>6</sup>,
М. П. Кирпичников<sup>1</sup>, К. В. Шайтан<sup>1</sup>
<sup>1</sup>Московский государственный университет им. М.В. Ломоносова, биологический факультет,
119234, Москва, Ленинские горы, 1, стр. 12
^2Институт биохимии им. А.Н. Баха, Федеральный исследовательский центр «Фундаментальные
основы биотехнологии» РАН, 119071, Москва, Ленинский просп., 33, корп. 2
<sup>3</sup>ОАО «Институт пластмасс», 111024, Москва, Петровский пр-д, 35
<sup>4</sup>Федеральный научно-клинический центр физико-химической медицины Федерального
медико-биологического агентства, 119435, Москва, ул. Малая Пироговская, 1а
⁵Московский государственный технический университет им. Н.Э. Баумана, 105005, Москва,
2-я Бауманская ул., 5, стр. 1
<sup>6</sup>Московский государственный университет им. М.В. Ломоносова, факультет почвоведения,
119234, Москва, Ленинские горы, 1, стр. 12
*E-mail: ant bonar@mail.ru
Поступила в редакцию 26.10.2015
Принята к печати 21.06.2016
```

РЕФЕРАТ Получение новых полиоксиалканоатов (ПОА) – биоразлагаемых полимеров биомедицинского назначения и биоматериалов на их основе – перспективное направление современной биоинженерии. Изучена способность эффективного штамма-продуцента Azotobacter chroococcum 7Б синтезировать не только гомополимер поли-3-оксибутирата (ПОБ) и его основной сополимер поли-3-оксибутират-со-3-оксивалерат (ПОБВ), но и новый сополимер поли-3-оксибутират-со-3-окси-4-метилвалерат (ПОБ4МВ). Для биосинтеза сополимеров ПОБ мы использовали карбоновые кислоты в качестве дополнительных источников углерода и предшественников мономеров в цепи синтезируемых сополимеров. Определены основные параметры биосинтеза полимеров: урожай биомассы штамма-продуцента, продукция полимера, молекулярная масса и мономерный состав синтезируемых полимеров, а также морфология клеток $A.\ chroococcum\ 7$ Б. Физикохимические свойства полученных полимеров определены с использованием спектроскопии ядерного магнитного резонанса (ЯМР), дифференциально-сканирующей калориметрии (ДСК), измерения контактного угла смачивания и др. Рост клеток на полученных полимерах in vitro оценен с использованием стромальных клеток (СК), выделенных из костного мозга крыс, и теста анализа жизнеспособности клеток ХТТ. Синтез нового сополимера ПОБ4МВ показан путем определения его химического состава методом спектроскопии ЯМР – добавление в культуральную среду 4-метилвалериановой кислоты приводило к включению в полимерную цепь ПОБ мономеров 3-окси-4-метилвалерата (304МВ) (0.6 мол. %). Несмотря на малое молярное содержание 3О4МВ в составе сополимера, его физико-химические свойства значительно отличались от свойств гомополимера ПОБ: имел сниженную степень кристалличности и повышенный контактный угол смачивания, т.е. по своим физико-химическим свойствам сополимер ПОБ4МВ с содержанием 3О4МВ всего 0.6 мол. % соответствовал сополимеру ПОБВ с молярным содержанием от 2.5 до 7.8%. Рост СК, определенный по тесту XTT, на полученном сополимере ПОБ4МВ in vitro не отличался статистически от их роста на полимерах ПОБ и ПОБВ, что позволяет использовать его в биомедицинских разработках и исследованиях. КЛЮЧЕВЫЕ СЛОВА Azotobacter chroococcum 7Б, биосинтез, биосовместимость, кристалличность, поли-3оксибутират, поли-3-оксибутират-со-3-окси-4-метилвалерат, стромальные клетки костного мозга.

ВВЕДЕНИЕ

В связи с интенсивным развитием таких биомедицинских направлений, как регенеративная медицина, биоинженерия (в том числе тканевая инженерия), биофармацевтика, нанобиотехнология, возрастает потребность в создании новых биоматериалов, особенно биосовместимых и биоразлагаемых полимеров. В качестве материалов для изготовления медицинских изделий и лекарственных форм используют целый ряд природных и синтетических полимеров: полиоксиалканоаты (ПОА), полиангидриды, полиалкилцианоакрилаты, полифосфазены, полифосфоэфиры, полиортоэфиры, некоторые полисахариды (хитозан, гиалуроновая кислота, агароза, декстран, альгинаты, хондроитинсульфат) и белки (коллаген, фибрин, фиброин щелка, спидроин, желатин) [1-5]. Эти полимеры применяются в медицинских имплантатах при восстановительной хирургии [4, 5], тканевой инженерии [3, 6, 7], для создания новых лекарственных форм в биофармацевтике [8, 9], новых материалов для стоматологии и в других приложениях [1, 2].

Несмотря на широкий ассортимент используемых в медицине полимеров, подавляющее большинство из них получают химическим синтезом или выделяют из природного сырья (водорослей, высших растений, грибов, ракообразных, тканей домашних животных). К сожалению, методы химического синтеза и выделения полимеров из природного сырья не могут в полной мере обеспечить набор свойств, необходимый для полимеров биомедицинского назначения. Требуется глубокая и очень дорогая очистка получаемых полимеров, которые должны иметь заданную в узких рамках химическую структуру и свойства, а также быть биобезопасными и т.п. Кроме того, синтетические полимеры и продукты их биодеградации могут быть токсичными, а природные полимеры могут обладать выраженной иммуногенностью или быть загрязнены вирусами или прионными белками [10, 11].

Среди разрабатываемых и используемых биомедицинских полимеров особое внимание привлекают биоразлагаемые поли-3-оксиалканоаты — поли-3-оксибутират (ПОБ) и его сополимеры (согласно отечественной химической номенклатуре высокомолекулярных соединений и ИЮПАК [12]). В отличие от природных полимеров (хитозана, альгината, декстрана, коллагена и др.) и химически синтезируемых полимеров, ПОА получают биотехнологическим путем, что позволяет добиваться высокой степени чистоты, контролировать и задавать в узких пределах основные физико-химические свойства биополимеров в процессе их биосинтеза. ПОА обладают набором уникальных свойств: высокой механической прочностью и термопластичностью, что обеспечивает про-

стоту переработки и позволяет получать широкий спектр изделий, способностью к образованию композитов с синтетическими полимерами, неорганическими материалами и лекарственными веществами, а также к полному биоразложению с образованием нетоксичных продуктов, биосовместимостью (в том числе гемосовместимостью) с тканями и органами человека и животных и экологической безопасностью. В связи с этим ПОА считаются перспективными для применения в медицине [13–16].

ПОА обладают также уникальной наноструктурой. Будучи частично кристаллическими, ПОА могут формировать различные супрамолекулярные структуры, такие, как ламеллы и сферолиты. Подобная частично кристаллическая структура и морфология во многом определяют биологические свойства ПОА, например кинетику биодеградации [17, 18].

Однако ПОА, как и другие полимерные материалы, в частности гомополимер ПОБ, может обладать и некоторыми недостатками: высокой гидрофобностью и кристалличностью, длительной биодеградацией и низкой пластичностью, что в ряде случаев серьезно ограничивает их применение в качестве биоинженерных материалов в медицине, например для изготовления протезов сосудов [19, 20]. В связи с этим разработка новых биотехнологических методов получения новых сополимеров ПОБ биомедицинского назначения с оптимальным сочетанием физико-химических и биологических свойств и биоматериалов на их основе считается наиболее перспективным направлением в современной биоинженерии [1, 2, 13–16].

Ранее мы показали возможность биосинтеза различных сополимеров ПОБ в высокоэффективном штамме-продуценте ПОА Azotobacter chroococcum 7Б с использованием различных методических подходов, провели комплексное исследование физикохимических и биологических свойств полученных полимеров. Этот штамм характеризуется неприхотливостью к условиям культивирования и биотехнологического процесса (необходимо только самое базовое оборудование, не требуются высокоспецифичные культуральные среды, газовое питание, высокоточный контроль специальных параметров и т.п.), высокой продуктивностью (высокий выход биомассы, содержание полимера и сухой биомассы в клетках до 80% и выше), высокой молекулярной массой синтезируемого полимера (более 1.5×10^6 Да). Такие характеристики крайне важны для биотехнологической продукции полимеров биомедицинского назначения в связи с необходимостью технически простой и глубокой очистки, помимо обеспечения их эффективной наработки [15, 21]. Однако у таких продуцентов имеются ограничения в синтезе сополимеров ПОБ, содержащих мономеры 3-оксикарбоновых кислот с длиной более пяти атомов углерода [22, 23]. Биосинтез нового сополимера ПОБ, поли3-оксибутират-со-3-окси-4-метилвалерата, показан с использованием таких бактериальных продуцентов, как Ralstonia eutropha, Burkholderia sp.,
Chromobacterium sp., способных к биосинтезу ПОА
с короткоцепочечными и длинноцепочечными мономерами карбоновых кислот [24–27]. Однако химическая структура этого сополимера (мономер 3-окси-4метилвалерат имеет Y-образную R-группу) особенно
интересна для изучения его биосинтеза именно такими бактериальными продуцентами, как Azotobacter
sp., из-за указанных ограничений.

Возможность биосинтеза новых сополимеров ПОБ такими бактериальными продуцентами, как Azotobacter sp., представляет большой научный и практический интерес. Нами изучена возможность биосинтеза нового сополимера ПОБ — поли-3-оксибутират-со-3-окси-4-метилвалерат — высокоэффективным штаммом-продуцентом ПОА $A.\ chroococcum\ 7$ Б, определены физико-химические свойства этого сополимера и его биосовместимость $in\ vitro.$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы

Натриевая соль валериановой кислоты, или валерат натрия (ВК), натриевая соль 4-метилвалериановой кислоты, или метилвалерат натрия (4МВК), натриевая соль гексановой кислоты, или гексаноат натрия (ГК); компоненты культуральной среды: $K_2HPO_4\cdot 3H_2O$, $MgSO_4\cdot 7H_2O$, NaCl, $Na_2MoO_4\cdot 2H_2O$, CaCO $_3$, $FeSO_4\cdot 7H_2O$, цитрат натрия, $CaCl_2$, KH_2PO_4 , сахароза, агар, фосфатно-солевой буфер (ФСБ). Все реактивы закуплены в компании Sigma Aldrich (Германия) и использованы в том виде, в котором получены.

Биосинтез полимеров

Для биосинтеза полимеров использован высокоэффективный штамм-продуцент ПОБ A. chroococcum 7Б, несимбиотическая азотфиксирующая бактерия, способная к сверхпродукции полимера (до 80% от сухого веса клеток) [28–31]. Штамм был выделен из ризосферы пшеницы (дерново-подзолистая почва) и поддерживался на среде Эшби, содержащей $0.2~\rm r/n~K_2HPO_4\cdot 3H_2O$, $0.2~\rm r/n~MgSO_4\cdot 7H_2O$, $0.2~\rm r/n~NaCl$, $0.006~\rm r/n~Na_2MoO_4\cdot 2H_2O$, $5.0~\rm r/n~CaCO_3$, $20~\rm r/n~caxaposы и <math>20~\rm r/n$ агара. Все эксперименты проведены в лабораторных условиях. Для достижения высокой продуктивности клеток культуру Azotobacter выращивали в качалочных колбах в микробиологической качалке Innova 43 (New Brunswick Scientific, США)

при постоянном перемешивании и 30°С на среде Берка в условиях избыточного содержания источника углерода в среде, содержащей 0.4 г/л MgSO₄·7H₂O₅ $0.01 \text{ r/m FeSO}_4.7 \text{H}_2\text{O}, 0.006 \text{ r/m Na}_2\text{MoO}_4.2 \text{H}_2\text{O}, 0.5 \text{ r/m}$ цитрата натрия, 0.1 г/л CaCl₂, 1.05 г/л К₂HPO₄·3H₂O, $0.2 \text{ г/л KH}_{2}\text{PO}_{4}$ и 17 г/л (50 мМ) сахарозы как основного источника углерода. Объем среды в колбе составлял 100 мл, что при высокой продуктивности штамма *A. chroococcum* 7Б при отборе проб в конце эксперимента позволяет анализировать процессы биосинтеза и иметь достаточное количество проб для статистической обработки (каждый эксперимент проведен в восьмикратной повторности). Для биосинтеза сополимеров ПОБ в культуральную среду добавляли соли карбоновых кислот (пропионовой, валериановой, 4-метилвалериановой, гексановой) в качестве дополнительных источников углерода. В качестве предшественника мономера 3-оксивалерата в составе ПОА в культуральную среду добавляли ВК в концентрации 5 и 20 мМ сразу и через 12 ч культивирования штамма-продуцента. Эти концентрации и временные интервалы выбраны для получения сополимера ПОБВ с различным содержанием 3-оксивалерата в цепи получаемого сополимера [28, 29]. В качестве потенциальных предшественников мономеров 3-окси-4-метилвалерата и 3-оксигексаноата в составе синтезируемого ПОА в культуральную среду добавляли 4МВК и ГК в концентрации 5, 10, 20 и 35 мМ через 12 ч культивирования штамма-продуцента и в концентрации 20 мМ через 0 ч. Такие концентрации этой карбоновой кислоты выбраны по аналогии с другими карбоновыми кислотами, используемыми для биосинтеза новых сополимеров ПОБ и согласно [24-27, 29]. Штамм-продуцент культивировали в течение 72 ч. Оптическую плотность культуральной среды контролировали при помощи нефелометрии. Рост и накопление полимера контролировали также при помощи световой микроскопии с использованием микроскопа Биомед-1 («Биомед», РФ) с цифровой камерой. Параметры биосинтеза сополимеров: урожай биомассы (г/л среды) и общее содержание полимера в клетках (вес. % от сухого веса клеток) (табл. 1) измеряли согласно ранее разработанным методикам. Процесс выделения и очистки полимера из биомассы штамма-продуцента включал экстракцию хлороформом, фильтрование, осаждение изопропиловым спиртом, очистку путем нескольких циклов растворенияосаждения и высушивание [28-31].

Исследование химического состава полимера методом спектроскопии ядерного магнитного резонанса (ЯМР)

Спектры ¹Н ЯМР 1% (вес/об.) растворов полимеров в дейтерированном хлороформе были сня-

ты на спектрометре MSL-300 300 МГц (Bruker, Германия) с экспериментальными параметрами: температура 313 К, релаксационная задержка 2.5 с, ширина спектрального окна 4000 Гц, и на спектрометре Bruker Avance III 500 МГц с трехканальным криодатчиком TCI Prodigy (Bruker, Германия) с экспериментальными параметрами: температура 310 К, релаксационная задержка 3.3 с, ширина спектрального окна 10000 Гц. Химические сдвиги (в миллионных долях) выставлены по сигналу остаточных протонов CDCl₂ (7.24 м.д. по ТМС). Процентное содержание мономеров 3-оксивалерата (3ОВ) в сополимере ПОБВ рассчитывали по соотношению интегральных интенсивностей сигнала метильной группы гидроксивалерата (0.89 м.д.) и суммарных сигналов метильной группы гидроксивалерата (0.89 м.д.) и метильной группы гидроксибутирата (1.27 м.д.) [29, 31]. Процентное содержание мономеров 3-окси-4-метилвалерата (3О4МВ) в сополимере ПОБ4МВ рассчитывали по соотношению суммы интегральных интенсивностей сигналов 4-метильной группы (g) (0.90 м.д.) и -CH (f) (1.91 м.д.) и суммы интегральных интенсивностей сигналов 4-метильной и -СН-групп остатка 3-окси-4-метилвалерата и метильной группы остатков 3-оксибутирата (1.27 м.д.) (рис. 2).

Определение молекулярной массы полимеров

Молекулярную массу (ММ) полимеров определяли методом гель-фильтрационной хроматографии (ГФХ). Данные, полученные методом ГФХ, были соотнесены с вискозиметрическими данными [28–31].

Получение экспериментальных образцов полимерных пленок

С целью изучения физико-химических свойств и роста клеток in vitro на полимерных пленках получены экспериментальные образцы полимерных пленок толщиной 40 мкм и диаметром 30 мм. Для изготовления образцов использовали синтезированные в бактериях полимеры: ПОБ, ПОБВ1 (2.5 мол. % 3ОВ), ПОБВ2 (7.8 мол. % ЗОВ) и ПОБ4МВ, характеристики которых приведены в табл. 2. Полимерные пленки готовили из 2% (вес/об.) растворов соответствующих полимеров в хлороформе путем испарения растворителя на стеклянной подложке. Вес пленок измерен с помощью весов AL-64 (Max = 60 г, d = 0.1 мг, Acculab, США) и составил 61 ± 8 мг. Толщина пленок, измеренная магнитным толщинометром, составила 38 \pm 6 мкм. Для работ с культурами клеток пленки стерилизовали автоклавированием, их предварительно инкубировали в дистиллированной воде при 37°C в термостате (ЕС 1/80 СПУ, РФ) в течение 2 ч [30, 31].

Дифференциальная сканирующая калориметрия

Теплофизические характеристики полимерных пленок (температуры плавления и кристаллизации, теплоты плавления и кристаллизации) измеряли с помощью метода дифференциальной сканирующей калориметрии согласно [32, 33]. Температуру начала и максимума пика плавления или кристаллизации обозначали как $T_{\rm пл.}^{~0}$, $T_{\rm пл.}^{\rm пик}$ и $T_{\rm кр.}^{\rm пик}$ соответственно. Кристалличность ПОА ($X_{\rm c}$) рассчитывали согласно [33]:

$$X_c = \Delta H_m(\Pi O A) / \Delta H_0 m(\Pi O B) \times 100\%$$

где ΔH_0 m(ПОБ) — теоретическое значение термодинамической энтальпии плавления, которая у 100% кристаллического ПОБ могла составить $146.6~\rm Дж/r$ [34], а $\Delta H_{\rm m}$ (ПОА) — экспериментальная энтальпия плавления соответствующего образца ПОА. Расчеты степени кристалличности образцов и температуры плавления произведены для данных, полученных на втором цикле нагрева полимеров, температура кристаллизации — на основании данных, полученных на первом цикле охлаждения. Данные представлены как средние значения из трех измерений.

Измерение контактного угла смачивания

Гидрофильность поверхности полимерных пленок оценивали, измеряя контактный угол смачивания, формирующийся между каплей воды и поверхностью полимерной пленки, с помощью цифрового угломера — системы анализа формы капли Drop Shape Analysis System — DSA100 (KRÜSS, GmbH, Германия) согласно [30, 31].

Исследование роста стромальных клеток на полимерных пленках

Стромальные клетки (СК) выделяли из костного мозга бедренных костей 3-дневных крыс линии Вистар по стандартной методике [35]. Животных забивали декапитацией, выделяли бедренные кости, отрезали эпифизы, костный мозг вымывали из диафизов с помощью шприца (2 мм, игла 27G). Полученную суспензию инкубировали в среде DMEM с коллагеназой типа 1 (1075 ед/мл) («ПанЭко», Россия) в течение 1 ч при 37°С, центрифугировали (10 мин, 100 об/мин), осадок высаживали на культуральный пластик. На следующий день меняли ростовую среду и далее культивировали до появления первичной монослойной культуры.

Жизнеспособность клеток оценивали с использованием теста XTT — аналога широко применяемого теста МТТ [30, 31, 36]. Этот тест, основанный на превращении неокрашенной соли тетразолия в окрашенные соединения формазана под действием NADPH-зависимых оксидоредуктаз, позволяет оце-

нить активность митохондриальных дегидрогеназ. Использовали набор для XTT (XTT Cell Proliferation Kit, Biological Industries, Израиль).

Задачей нашей работы была не проверка цитотоксичности, а выявление пролиферации клеток на матриксах, т.е. биосовместимости полимерных пленок. Клетки поддерживали в среде DMEM (Dubecco's Modified Eagle Medium, «ПанЭко», Россия), содержащей 10% эмбриональной телячьей сыворотки (Biological Industries, Израиль), 100 МЕ/мл пенициллина и 100 мкг/мл стрептомицина («ПанЭко»), при 37°C в атмосфере с 5% CO₂. Среду меняли каждые 3 дня. Стерильные образцы пленок ПОБ, ПОБВ1 и ПОБ4МВ (стерилизация автоклавированием) (n = 6) помещали в лунки 96-луночного планшета, клеточную суспензию наносили сверху из расчета 1500 клеток на образец. Использовали клетки второго пассажа, так как пролиферация клеток первого пассажа была не вполне стабильной, в повторных экспериментах наблюдались значительные различия в росте клеток первого пассажа на полимерных пленках. Мы определяли жизнеспособность клеток, культивируемых на полимерных пленках, на 1, 3, 7 сут, так как важно было оценить данный параметр в динамике. Установлено, что рост клеток стабилен в этом временном промежутке, а данные точки наиболее полно описывают динамику роста СК на пленках. После заданного времени культивирования удаляли среду из лунок, вносили 100 мкл свежей среды в новые чистые лунки и переносили туда наши образцы. Это делалось для того, чтобы учитывать только клетки, прикрепленные к полимерной подложке, и не учитывать клетки, которые могли открепиться от подложки и прикрепиться к полимерному планшету. Затем добавляли 50 мкл свежеприготовленного раствора XTT (по методике). По прошествии 4 ч инкубации при 37°C при плавном покачивании вынимали образцы и измеряли оптическую плотность на приборе Zenyth 3100 Microplate Multimode Detector (Anthos Labtec Instruments GmbH, Австрия) при 450 нм против 690 нм [30, 31].

Статистический анализ

Статистическую обработку параметров биосинтеза полимеров, контактного угла смачивания полимеров и их биосовместимости $in\ vitro$ на культуре клеток проводили с использованием программного пакета SPSS/PC+ Statistics 12.1 (SPSS). Использовали однофакторный дисперсионный анализ (One-way ANOVA). В таблицах и на рисунках данные представлены в виде средних величин и стандартной ошибки среднего (M \pm SD) при уровне значимости p<0.05, в подписях к рисункам и в примечании к таблицам указано число измерений (n). Представлены

средние значения физико-химических свойств полимеров, вычисленные из трех измерений.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Биосинтез сополимеров ПЗОБ с использованием дополнительных источников углерода

Результаты изучения биосинтеза сополимеров ПОБ штаммом-продуцентом A. chroococcum 7Б при добавлении различных дополнительных источников углерода (солей пропионой, валериановой и 4-метилвалериановой и гексановой кислот) в культуральную среду приведены в табл. 1. Результаты изучения биосинтеза сополимера ПОБВ подтверждают полученные ранее данные: мономеры 3-оксивалерата включаются в цепь сополимера ПОБВ при добавлении валериановой и пропионовой кислот в качестве дополнительных источников углерода, тогда как в присутствии более длинноцепочечной гексановой кислоты синтеза сополимеров не происходило. Причем молярное содержание 3ОВ в синтезируемом сополимере прямо зависит от концентрации ВК, добавляемой в культуральную среду. Молекулярная масса сополимера ПОБВ была ниже, чем у гополимера ПОБ, что, вероятно, связано с ингибирующим действием валерата на синтез полимера. Если же сахароза служит единственным источником углерода, то штамм-продуцент синтезирует высокомолекулярный ПОБ (1710 кДа) [29, 37-39].

С целью улучшения параметров биосинтеза полимеров используют различные дополнительные источники углерода. Показано, что дополнительные источники углерода не только влияют на молекулярную массу синтезируемых полимеров, но и приводят к синтезу сополимеров с новыми и модифицированными физико-химическими и биомедицинскими свойствами [29–31, 40–46].

Используя этот метод, показали возможность биосинтеза нового для штамма-продуцента А. chroococcum 7Б сополимера ПОБ4МВ путем добавления в культуральную среду 4МВК в качестве дополнительного источника углерода и предшественника мономера 3О4МВ в цепи сополимера. Вхождение остатков 3О4МВ в состав синтезированного полимера ПОБ4МВ подтверждено также данными спектроскопии ЯМР 1Н. На спектре ЯМР ¹Н 4-метильная группа (е) и −СН-группа (ж) мономера 3О4МВ представлены пиками 1.91 и 0.90 м.д. соответственно (рис. 2), тогда как у гомополимера ПОБ и сополимера ПОБВ в этой области нет сигналов. Мы предполагаем, что полученный сополимер, как и ПОБВ, является мультиблок-сополимером, и его синтез осуществляется по следующей схеме: 4МВК → 4-метилвалерил-КоА → 3-кето-4-

Таблица 1. Биосинтез сополимеров ПОБ *A. chroococcum* 7Б на сахарозосодержащей культуральной среде с добавлением солей карбоновых кислот

Субстрат	Время добавления соли карбоновой кис-лоты в культуральную среду, ч	Урожай биомассы, г/л среды	Содержание ПОА в биомассе, % от сухого веса клеток	Молекулярная масса ПОА, кДа	Содержание 3OB/3O4MB в сополимере, мол. %
Сахароза, 50 мМ	-	5.8 ± 0.6	83.4 ± 3.1	1710	0
С + 20 мМ ПК	12	$2.2 \pm 0.7*$	$63.3 \pm 3.3*$	890	2.9
C + 5 MM BK	12	$4.4 \pm 0.9^*$	$76.2 \pm 3.0^*$	1290	2.5
С + 20 мМ ВК	0	$3.1 \pm 1.3*$	$67.4 \pm 4.6^*$	1020	7.8
C + 20 mM BK	12	3.5 ± 0.8 *	$70.5 \pm 3.2^*$	1270	21.3
C+20 мМ 4МВК	0	$2.6 \pm 1.2^*$	$71.2 \pm 4.8^*$	620	0.04
C+5 mM 4MBK	12	$3.7 \pm 0.8*$	$79.3 \pm 3.2^*$	1390	0.14
C+10 мМ 4МВК	12	$3.6 \pm 0.9*$	$78.8 \pm 3.4^*$	1340	0.23
$C + 20 \text{ MM } 4\text{MBK}^{\#}$	12	$3.4 \pm 0.9*$	$76.7 \pm 3.3*$	1300	0.60
С + 35 мМ 4МВК	12	$2.7 \pm 0.8*$	$71.4 \pm 3.5^*$	1130	0.32
С + 20 мМ ГК	12	$2.7 \pm 0.7^*$	$64.3 \pm 3.7^*$	1020	0

 $^{^*}p < 0.05$ при сравнении с группой «Сахароза» (С), n = 8.

метилвалерил-КоА \rightarrow *D*-3-окси-4-метилвалерил-КоА \rightarrow 3O4MB в составе ПОБ4MB, т.е. подобно биосинтезу ПОБВ: ВК \rightarrow валерил-КоА \rightarrow 3-кетовалерил-КоА \rightarrow *D*-3-гидроксивалерил-КоА \rightarrow 3OB в составе ПОБВ [29, 37–39] (рис. 1).

Максимальное вхождение мономеров 3O4MB в состав синтезированного полимера ПОБ4MB составляло 0.6 мол. % при добавлении в культуральную среду 4MBK в концентрации 20 мМ в качестве дополнительного источника углерода, при других концентрациях карбоновой кислоты-предшественника вхождение мономеров было гораздо ниже. Тем не менее подтвержден сам факт синтеза этого сополимера.

Кодируемая геном рһbС ПОБ-синтаза является полимеразой короткоцепочечных карбоновых кислот, таких, как 3-гидроксибутират и 3-гидроксивалерат. Эта полимераза не способна использовать для синтеза ПОА средне- и длинноцепочечные 3-гидроксикарбоновые кислоты, а именно кислоты, длиннее 3-гидроксивалериановой кислоты (5С 3-гидроксикарбоновая кислота), т.е. 3-гидроксигексановую и 3-гидроксигептановую кислоты этот фермент не может инкорпорировать в состав растущей цепи ПОА [22, 23]. Тем не менее в качестве добавки мы использовали ГК, которая как изомер 4МВК может служить контролем, поскольку известно, что присутствие ГК не приводит к синтезу сополимера ПОБ клетками A. chroococcum. Однако влияние ГК на сам процесс биосинтеза необходимо было проконтролировать. Полученные нами данные подтверждают ограничения по длине используемых мономеров для ПОБ-синтазы, что, по-видимому, связано со строгой специфичностью этого фермента по отношению к субстратам, используемым для синтеза полимера. Включение остатков 3-окси-4-метилвалерата лишь подтверждает это ограничение, так как несмотря на то, что 3-окси-4-метилвалерат является остатком 6С 3-гидроксикарбоновой кислоты, его боковая группа имеет вилкообразную форму, что не приводит к увеличению длины боковой цепи. А вот линейная молекула — 3-оксигексановая кислота (6С линейная 3-оксикарбоновая кислота (6С линейная ферментом в состав растущей цепи полиэфира по тем же причинам.

Интересно, что добавление в культуральную среду ВК и 4МВК вызывает небольшое снижение молекулярной массы синтезируемого полимера, что можно объяснить ингибирующим действием карбоновых кислот на процесс биосинтеза ПОА (табл. 1). Однако если добавить 4МВК в культуральную среду не через 12 ч, а сразу же, то будет наблюдаться не только значительное снижение молекулярной массы полимера, но, прежде всего, практически не будет синтезироваться собственно сам сополимер ПОБ4МВ. Аналогичный эффект наблюдается и при начальном добавлении ВК в культуральную среду, но в этом случае синтезируется сополимер ПОБВ с гораздо меньшим содержанием мономеров 3ОВ. Снижение молекулярной массы происходит и при добавлении в культуральную среду ГК, хотя сополимер при этом не синтезируется. Это также может быть связано с ингибирующим действием карбоновых кислот

^{# —} экспериментальные данные для полученного согласно приведенным в данной строке условиям биосинтеза сополимера ПОБ4МВ показаны на рис. 2, 4 и в табл. 2.

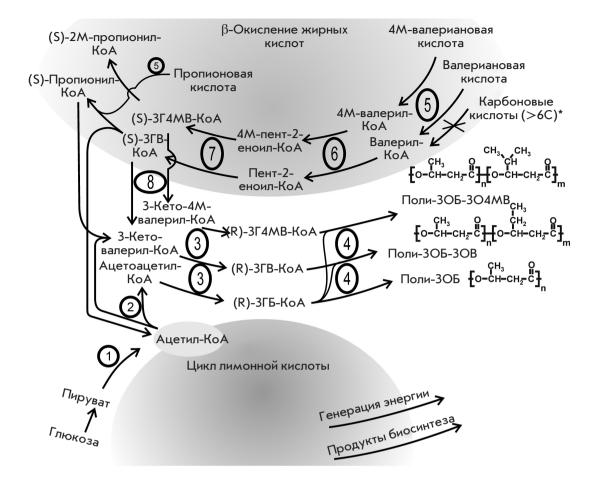


Рис. 1. Схема биосинтеза ПОБ и его сополимеров A. chroococcum 7Б. 1 — пируват-дегидрогеназный комплекс; $2 - \beta$ -кетотиолаза; 3 — NADPH-зависимая ацетоацетил-КоА-редуктаза; 4 — ПОА-полимераза короткоцепочечных карбоновых кислот; 5 — ацил-КоА-синтаза; 6 — ацил-КоА-дегидрогеназа; 7 — еноил-КоА-гидратаза; 8 — NADH-зависимая ацетоацетил-КоА-редуктаза. Сокращения на схеме: 4М — 4-метил-; 2М — 2-метил-; 3ГБ — 3-гидроксибутират-; 3ГВ — 3-гидроксивалерат-; 3Г4МВ — 3-гидрокси-4-метилвалерат; поли-3ОБ-3ОВ — поли-3-оксибутират-со-3-оксивалерат; поли-3ОБ — поли-3-оксибутират

на ПОБ-синтазу, которое на ранних стадиях биосинтеза полимера приводит к снижению включения молекул-предшественников в растущую цепь сополимера, хотя теоретически, напротив, должно приводить к синтезу сополимеров с большим содержанием 3ОВ и 3О4МВ.

Влияние карбоновых кислот на биосинтез полимеров подтверждают результаты изучения роста культуры *A. chroococcum* 7Б. Полученные результаты свидетельствуют о том, что добавление в среду карбоновых кислот приводит к заметному подавлению роста клеток, снижению содержания полимера и, как следствие, продукции полимера, причем степень такого ингибирующего влияния на рост клеток зависит от химической природы добавки [29]. Так, несмотря на то, что при использовании ГК в качестве

дополнительного источника углерода, сополимер не синтезируется, Γ К значительно подавляет рост клеток и продукцию полимера (maбn. 1).

Несмотря на некоторое снижение параметров биосинтеза ПОБ4МВ, следует отметить высокую продуктивность (урожай биомассы — $3.4 \, \mathrm{г/л}$; содержание сополимера — 76.7%) штамма-продуцента и высокую молекулярную массу сополимера (1.3×10^6). Биосинтез ПОБ4МВ был показан ранее с использованием различных продуцентов: R.~eutropha, Burkholderia sp., Chromobacterium sp., однако, содержание полимера в клетках штаммов-продуцентов редко превышал 50%, а сам биотехнологический процесс требовал высокоспецифичных технических условий, что может существенно ограничивать использование этих методик для продукции новых

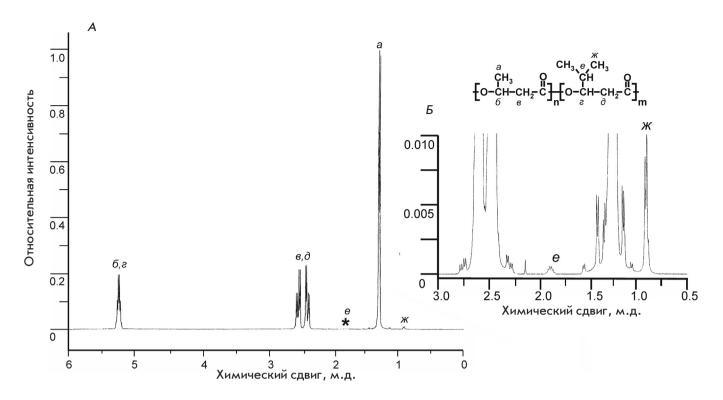


Рис. 2. Спектр ЯМР ¹Н 500 МГц сополимера ПОБ4МВ. A – полимерная цепь ПОБ: a – $CH_3(s)$, b – $CH_2(b)$, полимерная цепь поли-3-окси-4-метилвалерата: r – $CH_2(s)$, d – $CH_3(s)$, e – CH(b), m – $CH_2(b)$; * увеличенный участок графика изображен на врезке (b)

полимеров биомедицинского назначения. Вероятно, в связи с подобными препятствиями биосовместимость синтезированных по разработанным методикам сополимеров не тестировали [24–27]. Поэтому использование высокопродуктивных и неприхотливых к условиям культивирования штаммов-продуцентов для получения новых сополимеров, таких, как *A. chroococcum* 7Б [15, 29–31], представляется особенно важным.

Добавление в культуральную среду карбоновых кислот также вызывает изменение морфологии бактериальных клеток (рис. 3). A. chroococcum характеризуется высокой склонностью к плеоморфизму клеток, чем и может быть объяснен этот эффект. Так, если при добавлении валериановой кислоты в низких концентрациях (5 мМ) морфология клеток почти не изменялась, то добавление ВК в относительно высоких концентрациях (20 мМ) приводило к выраженному изменению клеточной морфологии - коккоидные клетки трансформировались в бациллярные формы (рис. 3Б). Добавление 20 мМ ГК приводило даже к возникновению нитеобразных клеток, хотя коккоидные и бациллярные формы также присутствовали (рис. 3В). Такое влияние карбоновых кислот на морфологию бактериальных клеток сходно

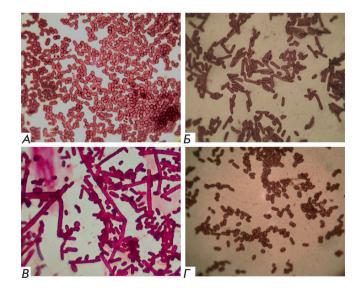


Рис. 3. Влияние добавления карбоновых кислот в культуральную среду на морфологию клеток штаммапродуцента $A.\ chroococcum$ (световая микроскопия, \times 900). A-C+5 мМ ВК (добавка через 12 ч), через 72 ч культивирования; B-C+20 мМ ВК (добавка на 0 ч), через 72 ч культивирования; B-C+20 мМ ГК (добавка через 12 ч), через 72 ч культивирования; C-C+20 мМ 4МВК (добавка через 12 ч), через 72 ч культивирования

Таблица 2. Физико-химические свойства сополимеров ПОБ, полученных в клетках A. chroococcum 7Б

Полимер	Химический состав			Физико-термические свойства			Гидрофильность
	Содержание 3OB/304MB, мол. %	Молекулярная масса, кДа	$ m M_w/M_n$	Температура плавления (нач. и пик) ($T_{nn}^{-0}/T_{nn}^{-nuk}$, °C)	Температура кристаллиза- ции (нач. и пик) ($T_{wn}^{\text{пик}}$, °C)	Кристалличность (X_c) , $\%$	Контактный угол смачива- ния, град
ПОБ	0	1710	1.7	166.8/176.9	62.2	86.6*/74.7**	70.1 ± 2.6
ПОБВ1	2.5	1290	1.9	166.0/174.8	60.3	56.4/52.8	70.7 ± 2.2
побв2	7.8	1020	1.8	161.2/169.0	66.3	47.5/45.2	$76.4 \pm 2.3^*$
ПОБ4МВ	0.6	1300	2.0	169.9/177.3	75.1	58.0/49.6	$75.1 \pm 1.1^*$

^{*}Расчет по первому циклу прогрева.

Примечание. Во всех столбцах, кроме последнего, приведены как средние данные, вычисленные по трем измерениям; в последнем столбце «Контактный угол смачивания» -*p < 0.05 при сравнении с группой ПОБ, n = 10.

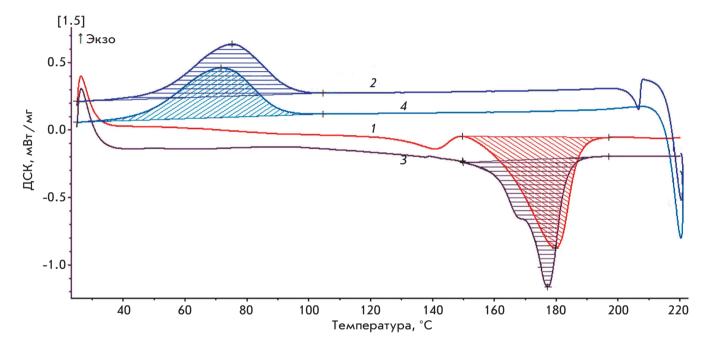


Рис. 4. ДСК-термограммы ПОБ4МВ, полученного путем биосинтеза *A. chroococcum* 7Б: 1 – кривая первого цикла нагрева; 2 – кривая первого цикла охлаждения; 3 – кривая второго цикла нагрева; 4 – кривая второго цикла охлаждения; заштрихованы площади пиков плавления и кристаллизации соответственно

с хорошо известным эффектом различных стрессиндуцирующих веществ (кислот, щелочей, пептона) на форму клеток [47, 48].

Исследование физико-химических свойств полимеров

Изучение физико-химических свойств полимеров, синтезируемых штаммом-продуцентом A. chroococcum 7Б, выявило значительное отличие физико-термических свойств и гидрофильности сополимеров ПОБ — ПОБВ1 (2.5 мол. % 3ОВ), ПОБВ2 (7.8

мол. % 3ОВ) и ПОБ4МВ от гомополимера ПОБ, несмотря на низкое молярное содержание 3ОВ и 3О4МВ в сополимерах ПОБВ1 и ПОБ4МВ соответственно (maбл. 2).

На рис. 4 представлены термограммы ДСК сополимеров ПОБВ и ПОБ4МВ в сравнении с ПОБ. Термограмма плавления полимеров содержит выраженные пики плавления полукристаллических полимеров и их кристаллизации. Пики плавления сополимеров ПОБВ и ПОБ4МВ в сравнении с гомополимером ПОБ характеризовались:

^{**}Расчет по второму циклу прогрева.

- незначительным изменением пика плавления, что свидетельствует об отсутствии значительного изменения температуры плавления сополимеров;
- смещением пика кристаллизации ПОБ4МВ в область более высоких температур, что свидетельствует об увеличении температуры кристаллизации этого сополимера;
- уменьшением площади пика плавления, что свидетельствует об уменьшении энтальпии плавления и соответственно кристалличности сополимеров.

Расчет физико-термических параметров, полученных из анализа данных ДСК-термограмм, приведен в табл. 2. Из табл. 2 следует, что сополимеры как ПОБВ, так и ПОБ4МВ обладают значительно меньшей степенью кристалличности, чем ПОБ (на 21.9 и 25.1% соответственно), причем у нового сополимера ПОБ4МВ степень падения кристалличности даже выше, чем у сополимера ПОБВ1, несмотря на то, что молярное содержание 3О4МВ в ПОБ4МВ составляет всего 0.6 против 2.5% 3ОВ в сополимере ПОБВ, и сравнима со степенью кристалличности сополимера ПОБВ2, у которого молярное содержание 3ОВ составляет 7.8%. Частично такое падение кристалличности сополимеров может быть связано с более низкой их молекулярной массой (на более 300 кДа по сравнению с ПОБ). Сами показатели кристалличности (рассчитанные по первому и второму циклам прогрева полимерных образцов, табл. 2) соответствуют опубликованным данным [49]. Показано, что уменьшение молекулярной массы полимеров может приводить к довольно значительному (до 10% и более при уменьшении ММ в 2 раза) падению степени их кристалличности [49]. Однако основной вклад в падение степени кристалличности вносят мономеры (3ОВ и 3О4МВ) в сополимерах с более длинной боковой группой, чем у 3ОБ. Это подтверждает данные о том, что введение мономеров 3ОВ в полимерную цепь ПОБ приводит к получению сополимера с измененными физико-химическими свойствами: с более низкой температурой плавления, с меньшей кристалличностью, более пластичного, менее прочного и обладающего большей скоростью биодеградации [22, 32], причем кристалличность сополимера ПОБВ значительно падает при увеличении молярного содержания мономеров 3ОВ в составе его цепи [32]. Однако в случае ПОБ4МВ мы наблюдаем гораздо более выраженный эффект: по своим физико-химическим свойствам сополимер ПОБ4МВ с молярным содержанием 3О4МВ всего 0.6% соответствует сополимеру ПОБВ с молярным содержанием от 2.5 до 7.8%. Аналогичную картину мы наблюдаем при анализе гидрофильности полимеров. Если контактный угол смачивания (как показатель гидрофильности поверхности полимеров) гомополимера ПОБ и его сополиме-

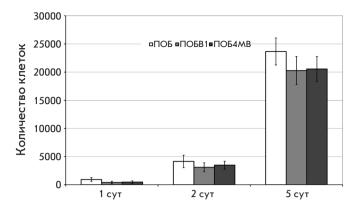


Рис. 5. Динамика изменения количества жизнеспособных стромальных клеток костного мозга крыс, культивируемых на полимерных пленках ПОБ, ПОБВ1 и ПОБ4МВ по данным теста XTT. *p < 0.05 при сравнении с группой ПОБ, n = 6

ра ПОБВ1 не различались, то у сополимеров ПОБВ2 и ПОБ4МВ этот показатель был значительно выше, но при этом контактный угол смачивания у ПОБ4МВ был лишь незначительно ниже ПОБВ2. Ранее показали, что контактный угол смачивания сополимера ПОБВ возрастает при увеличении в нем молярного содержания мономеров 3ОВ, а гидрофильность полимерной пленки падает из-за увеличения концентрации гидрофобных групп на ее поверхности [50]. Таким образом, по данным анализа гидрофильности полимеров сополимер ПОБ4МВ с содержанием 3О4МВ всего 0.6% соответствует сополимеру ПОБВ с молярным содержанием от 2.5 до 7.8%. Это может быть связано с гораздо более выраженным дестабилизирующим влиянием вилкообразной боковой группы остатков 3О4МВ на кристаллическую структуру полимера по сравнению с эффектом линейной группы 3ОВ в сополимере ПОБВ (рис. 1), что и объясняет столь непропорционально большой вклад столь низкого содержания 3О4МВ в изменение физико-химических свойств полимера.

Исследование роста стромальных клеток на пленках из полимеров

Изучение биосовместимости *in vitro* полимеров, полученных путем биосинтеза в клетках *A. chroococcum* 7Б с использованием культуры выделенных из костного мозга стромальных клеток, выявило значительное увеличение количества жизнеспособных СК на пленках из трех полимеров: ПОБ, ПОБВ1 (2.5 мол. % 3ОВ) и ПОБ4МВ в течение 5 сут. (рис. 5). Не наблюдали статистических различий в пролиферации клеток на пленках из различных полимеров. Таким образом, новый сополимер ПОБ4МВ

можно использовать для биомедицинских разработок и исследований наряду с его аналогами — ПОБ и ПОБВ, в частности, для изготовления матриксов, применяемых в инженерии костной ткани [51, 52].

ВЫВОДЫ

Нами показано, что добавление 4-метилвалериановой кислоты в культуральную среду штамма-продуцента *А. chroococcum* 7Б приводит к включению в полимерную цепь ПОБ мономеров 6С-оксикарбоновой кислоты — 3-окси-4-метилвалерата, и синтезу сополимера поли-3-оксибутират-со-3-окси-4-метилвалерат. Несмотря на малое молярное содержание 3О4МВ в составе полученного сополимера, по своим физико-химическим свойствам ПОБ4МВ, содержащий всего 0.6% 3О4МВ, соответствовал со-

полимеру ПОБВ с молярным содержанием от 2.5 до 7.8% 3О4МВ. Рост СК, определенный по тесту XTT, на сополимере ПОБ4МВ *in vitro* не отличался статистически значимо от их роста на ПОБ и ПОБВ, что позволяет использовать его в биомедицинских разработках и исследованиях. ●

Авторы благодарят В.О. Попова (Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН) за поддержку работы. В работе использовано оборудование центров коллективного пользования МГУ и ФИЦ ФОБ РАН.

Работа поддержана грантом РФФИ офи-м, проект № 15-29-04856.

СПИСОК ЛИТЕРАТУРЫ

- 1. Biomedical polymers / Ed. Jenkins M. Birmingham, UK: University of Birmingham, 2007. 203 p.
- 2. Shtilman M.I. Polymeric biomaterials. Part 1. Polymer implants. VSP: Leiden, Netherlands, 2003. 294 p.
- 3. Moisenovich M.M., Pustovalova O., Shackelford J., Vasiljeva T.V., Druzhinina T.V., Kamenchuk Y.A., Guzeev V.V., Sokolova O.S., Bogush V.G., Debabov V.G., et al. // Biomaterials. 2012. V. 33. № 15. P. 3887–3898.
- 4. Satyam A., Kumar P., Fan X., Gorelov A., Rochev Y., Joshi L., Peinado H., Lyden D., Thomas B., Rodriguez B., et al. // Advanced Materials. 2014. V. 26. № 19. P. 3024–3034.
- 5. Miroiu F.M., Stefan N., Visan A.I., Nita C., Luculescu C.R., Rasoga O., Socol M., Zgura I., Cristescu R., Craciun D., et al. // Appl. Surface Sci. 2015. V. 355. P. 1123–1131.
- 6. Baradaran-Rafii A., Biazar E., Heidari-Keshel S. // ASAIO J. 2015. V. 61. \mathbb{N}_2 5. P. 605–612.
- 7. Bondar O.V., Saifullina D.V., Shakhmaeva I.I., Mavlyutova I.I., Abdullin T.I. // Acta Naturae. 2012. V. 4. № 1. P. 78–81.
- 8. Ulasov A.V., Khramtsov Y.V., Trusov G.A., Rosenkranz A.A., Sverdlov E.D., Sobolev A.S. // Mol. Therapy. 2011. V. 19. № 1. P. 103–112.
- 9. Kolotova E.S., Egorova S.G., Ramonova A.A., Bogorodski S.E., Popov V.K., Agapov I.I., Kirpichnikov M.P. // Acta Naturae. 2012. V. 4. № 1. P. 101–106.
- 10. Agrawal C.M., Athanasiou K.A. // J. Biomed. Mater. Res. 1997. V. 38. P. 105-114.
- 11. Stevanovic M., Pavlovic V., Petkovic J., Filipic M., Uskokovic D. // Express Polymer. Lett. 2011. V. 5. № 11. P. 996–1008.
- 12. Киреев В.В. Высокомолекулярные соединения. М.: Выс-шая школа, 1992. 512 с.
- 13. Volova T., Shishatskaya E., Mogilnaya O., Sevastianov V., Efremov S. // Biochem. Engin. J. 2003. V. 16. № 2. P. 125–133.
- 14. Sevastianov V.I., Perova N.V., Shishatskaya E.I., Kalacheva G.S., Volova T.G. // J. Biomat. Sci. Polymer Ed. 2003. V. 14. № 10. P. 1029–1042.
- 15. Бонарцев А.П., Бонарцева Г.А., Шайтан К.В., Кирпичников М.П. // Биомед. химия. 2011. V. 57. № 4. Р. 374-391.
- 16. Singh M., Kumar P., Ray S., Kalia V.C. // Ind. J. Microbiol. 2015. V. 55. \mathbb{N}_2 3. P. 235–249.
- 17. Shtukenberg A.G., Punin Y.O., Gunn E., Kahr B. // Chem. Rev. 2012. V. 112. № 3. P. 1805–1838.

- 18. Chardron S., Bruzaud S., Lignot B., Elain A., Sire O. // Polymer Testing. 2010. V. 29. № 8. P. 966–971.
- 19. Bonartsev A.P., Boskhomodgiev A.P., Iordanskii A.L., Bonartseva G.A., Rebrov A.V., Makhina T.K., Myshkina V.L., Yakovlev S.A., Filatova E.A., Ivanov E.A., et al. // Mol. Crystals Liquid Crystals. 2012. V. 556. № 1. P. 288–300.
- 20. Engelberg I., Kohn J. // Biomater. 1991. V. 12. P. 292-304.
- 21. Прудскова Т.Н., Кириллович В.И., Заковряшина Н.А., Ермилина Н.И., Андреева Т.И., Бонарцева Г.А., Бонарцев А.П., Иорданский А.Л., Махина Т.К., Мышкина В.Л., Попов В.О. // Патент РФ на изобретение № 2333962. 17.10.2006.
- Pearce R.P., Marchessault R.H. // Macromol. 1994. V. 27.
 P. 3869–3874.
- 23. Pettinari M.J., Vazquez G.J., Silberschmidt D., Rehm B., Steinbüchel A., Mendez B.S. // Appl. Environ. Microbiol. 2001. V. 67. № 11. P. 5331–5334.
- 24. Lau N.S., Tsuge T., Sudesh K. // Appl. Microbiol. Biotechnol. 2011. V. 89. \mathbb{N}_2 5. P. 1599–1609.
- 25. Saika A., Watanabe Y., Sudesh K., Tsuge T. // J. Biosci. Bioeng. 2014. V. 117. \mathbb{N}_2 6. P. 670–675.
- 26. Ling S.C., Tsuge T., Sudesh K. // J. Appl. Microbiol. 2011. V. 111. \aleph_2 3. P. 559–571.
- 27. Tanadchangsaeng N., Tsuge T., Abe H. // Biomacromolecules. 2010. V. 11. № 6. P. 1615–1622.
- 28. Мышкина В.Л., Николаева Д.А., Махина Т.К., Бонарцев А.П., Бонарцева Г.А. // Прикладная биохимия и микробиология. 2008. V. 44. № 5. Р. 533-538.
- 29. Мышкина В.Л., Иванов Е.А., Николаева Д.А., Махина Т.К., Бонарцев А.П., Филатова Е.В., Ружицкий А.О., Бонарцева Г.А. // Прикладная биохимия и микробиология. 2010. V. 46. № 3. Р. 1–8.
- 30. Bonartsev A.P., Yakovlev S.G., Zharkova I.I., Boskhomdzhiev A.P., Bagrov D.V., Myshkina V.L., Makhina T.K., Kharitonova E.P., Samsonova O.V., Voinova V.V., et al. // BMC Biochem. 2013, V. 14. P. 12.
- 31. Bonartsev A.P., Yakovlev S.G., Boskhomdzhiev A.P., Zharkova I.I., Bagrov D.V., Myshkina V.L., Mahina T.K., Charitonova E.P., Samsonova O.V., Zernov A.L., et al. // PLoS One. 2013. V. 8. № 2. e57200.
- 32. Savenkova L., Gercberga Z., Bibers I., Kalnin M. // Proc. Biochem. 2000. V. 36. \mathbb{N}_2 5. P. 445–450.

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

- 33. Zheng Z., Bei F.F., Tian H.L., Chen G.Q. // Biomaterials. 2005. V. 26. № 17. P. 3537–3548.
- 34. Barham P.J., Keller A., Otun E.L., Holmes P.A. // J. Materials Sci. 1984. V. 19. № 9. P. 2781–2794.
- 35. Maniatopoulos C., Sodek J., Melcher A.H. // Cell Tissue Res. 1998. V. 254. \mathbb{N}_2 2. P. 317–330.
- 36. Sutherland M.W., Learmonth B.A. // Free Rad. Res. 1997. V. 27. \mathbb{N}_2 3. P. 283–289.
- 37. Senior P.J., Dawes E.A. // Biochem. J. 1973. V. 134. P. 225−238. 38. Madison L.L., Huisman G.W. // Microbiol. Mol. Biol. Rev. 1999. V. 63. N 1. P. 21−53.
- 39. Ren Q., Sierro N., Kellerhals M., Kessler B., Witholt B. // Appl. Environ. Microbiol. 2000. V. 66. № 4. P. 1311–1320.
- 40. Elsayed N.S., Aboshanab K.M., Aboulwafa M.M., Hassouna N.A. // African J. Microbiol. Res. 2013. V. 7. № 43. P. 5025–5035.
- 41. Pramanik N., Mukherjee K., Nandy A., Mukherjee S., Kundu P.P. // J. Appl. Polym. Sci. 2014. V. 131. \mathbb{N} 22. 41080.
- 42. Xin J., Zhang Y., Dong J., Song H., Xia C.G. // African J. Biotechnol. 2011. V. 10. № 36. P. 7078–7087.
- 43. Karthikeyan O.P., Chidambarampadmavathy K., Nadarajan S., Lee P.K., Heimann K. // Chemosphere. 2015. V. 141. P. 235–242.
- 44. Zhu C., Chiu S., Nakas J.P., Nomura C.T. // J. Appl. Polym. Sci. 2013. V. 130. № 1. P. 1–13.

- 45. Pena C., Castillo T., Garcia A., Millán M., Segura D. // Microbial Biotechnol. 2014. V. 7. № 4. P. 278–293.
- 46. Pena C., Lopez S., Garcia A., Espín G., Romo-Uribe A., Segura D. // Ann. Microbiol. 2014. V. 64. № 4. P. 39–47.
- 47. Eisenstark A., McMahon K.J., Eisenstark R. // J. Bacteriol. 1950. V. 59. № 1. P. 75−81.
- 48. Vela G.R., Rosenthal R.S. // J. Bacteriol. 1972. V. 111. № 1. P. 260–266.
- 49. Dominguez-Diaz M., Meneses-Acosta A., Romo-Uribe A., Pena C., Segura D., Espin G. // European Polymer J. 2015. V. 63. P. 101–112.
- 50. Choi G.G., Kim H.W., Rhee Y.H. // J. Microbiol. 2004. V. 42. \mathbb{N}_2 4. P. 346–352.
- 51. Andreeva N.V., Bonartsev A.P., Zharkova I.I., Makhina T.K., Myshkina V.L., Kharitonova E.P., Voinova V.V., Bonartseva G.A., Shaitan K.V., Belyavskii A.V. // Bull. Exp. Biol. Med. 2015. V. 159. № 4. P. 567–571.
- 52. Bonartsev A.P., Zharkova I.I., Yakovlev S.G., Myshkina V.L., Makhina T.K., Zernov A.L., Kudryashova K.S., Feofanov A.V., Akulina E.A., Ivanova E.V., et al. // J. Biomaterials Tissue Engin. 2016. V. 6. № 1. P. 42–52.