УДК 577.15:544.3

# Термодинамические параметры взаимодействия эндонуклеазы VIII с поврежденной ДНК

О. А. Кладова<sup>1</sup>, Н. А. Кузнецов<sup>1,2\*</sup>, О. С. Федорова<sup>1,2\*</sup>

1Институт химической биологии и фундаментальной медицины СО РАН, 630090,

Новосибирск, просп. Академика Лаврентьева, 8

<sup>2</sup>Новосибирский государственный университет, 630090, Новосибирск, ул. Пирогова, 2

\*E-mail: fedorova@niboch.nsc.ru, nikita.kuznetsov@niboch.nsc.ru

Поступила в редакцию 23.10.2018

Принята к печати 28.01.2019

РЕФЕРАТ Проведен термодинамический анализ взаимодействия эндонуклеазы VIII (Endo VIII) с модельными ДНК, содержащими поврежденные нуклеотиды, такие, как 5,6-дигидроуридин и 2-гидроксиметил-3-гидрокситетрагидрофуран (F-сайт). Методом «остановленного потока» при разных температурах с регистрацией изменений интенсивности флуоресценции остатка 1,3-диаза-2-оксофеноксазина, расположенного в комплементарной цепи напротив специфического сайта, проведен анализ кинетики фермент-субстратного взаимодействия. Рассчитаны изменения стандартной свободной энергии Гиббса, энтальпии и энтропии для последовательных стадий ферментативного процесса, а также образования переходного состояния в каталитической стадии. Совокупный анализ кинетических и термодинамических данных о конформационных превращениях фермента Endo VIII и ДНК, протекающих в ходе их взаимодействия, позволил детализировать природу молекулярных процессов, происходящих на стадиях связывания субстрата, узнавания поврежденного основания и его удаления из ДНК.

**КЛЮЧЕВЫЕ СЛОВА** ДНК-гликозилаза, кинетический механизм, предстационарная кинетика, термодинамика.

СПИСОК СОКРАЩЕНИЙ Endo VIII — эндонуклеаза VIII; AP-сайт — апуриновый/апиримидиновый сайт; F-сайт — остаток (2R,3S)-2-(гидроксиметил)-3-гидрокситетрагидрофурана; DHU — 5,6-дигидроуридин.

### **ВВЕДЕНИЕ**

Эндонуклеаза VIII (Endo VIII, или Nei) — одна из основных ДНК-гликозилаз Escherichia coli, удаляющих широкий набор окисленных или восстановленных пиримидиновых оснований [1, 2]. Продуктами окисления/восстановления пиримидиновых оснований ДНК являются тимингликоль, 5,6-дигидротимин, 5,6-дигидроурацил, мочевина, 5-формилурацил, 5-оксиметилурацил, 5-гидроксицитозин, 5-гидроксиурацил, урацилгликоль и др. Endo VIII катализирует гидролиз N-гликозидной связи поврежденного основания (N-гликозилазная активность) и последующие реакции β-элиминирования 3'- и 5'-фосфатных групп апуринового/апиримидинового сайта (AP-лиазная активность), приводящие к образованию одноцепочечного разрыва в ДНК (рис. 1) [3, 4].

Анализ рентгеноструктурных данных свободного фермента и его комплекса с ДНК показал, что взаимодействие Endo VIII с ДНК приводит к конформационным изменениям как в молекуле белка, так и в молекуле субстрата [5, 6]. В фермент-субстратном комплексе происходит изгибание рибозофосфатного остова ДНК примерно на 45°, поврежденное основание выворачивается из ДНК-спирали и располагается в активном центре фермента, а в образовавшуюся полость встраиваются аминокислотные остатки Gln69, Leu70 и Tyr71 (рис. 2). Такие изменения структуры взаимодействующих молекул приводят к образованию специфических контактов, результатом которых является высокоэффективное узнавание и связывание поврежденных участков ЛНК.

Ранее методом «остановленного потока» с регистрацией изменения интенсивности флуоресценции

Рис. 1. Стадии процесса катализа Endo VIII. 1 – Гидролиз N-гликозидной связи и удаление поврежденного основания с образованием AP-сайта;  $2-\beta$ -элиминирование 3'-фосфатной группы;  $3-\beta$ -элиминирование 5'-фосфатной группы

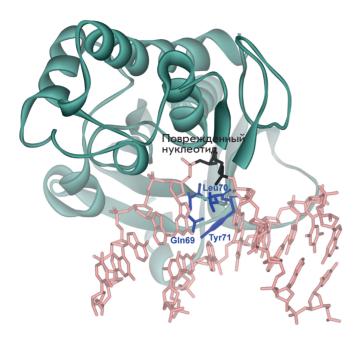



Рис. 2. Структура ковалентного комплекса фермента Endo VIII с дуплексом ДНК, содержащим АР-сайт (PDB ID 1K3W) [6]

остатков триптофана [7], входящих в состав фермента, и ряда флуоресцентных аналогов гетероциклических оснований в ДНК [8], расположенных с 5'-стороны или напротив поврежденного нуклеотида, был проведен кинетический анализ конформационных изменений в Endo VIII и ДНК-субстрате в ходе их взаимодействия. В дальнейшем [9] для уточнения природы последовательных стадий связывания ДНК мы использовали стратегию сайт-направленного мутагенеза. Совокупность кинетических данных, характеризующих конформационные изменения фермента и ДНК-субстратов, а также результатов мутационного анализ позволила предложить молекулярно-кинетический механизм узнавания повреждения ферментом Endo VIII (схема 1). Стадия 1 соответствует быстрому первоначальному связыванию ДНК и образованию неспецифического комплекса ферментсубстратного комплекса, в котором N- и С-домены фермента переходят в закрытое положение. На этой стадии остаток Leu70 вклинивается в ДНК-дуплекс, что является ключевым моментом узнавания поврежденного участка ДНК. Стадия 2 включает изгибание двойной спирали в месте поврежденного основания, выворачивание 5,6-дигидроурацила из дуплекса и встраивание остатка Туг71 в ДНКспираль, необходимое для стабилизации вывернутой конформации поврежденного основания. На стадии 3 происходит подстройка конформации активного центра для достижения каталитически-компетентного состояния. Остаток Туг71 также принимает участие в стадии 3. На этой стадии образуются контакты между Phe121 и рибозо-фосфатным остовом ДНК. Формирование каталитического комплекса приводит к гидролизу N-гликозидной связи и последующей реакции β-элиминирования 3'- и 5'-фосфатных групп (стадия 4). Завершает ферментативный цикл диссоциация комплекса фермент-продукт (стадия 5).

Cxema 1. Кинетический механизм взаимодействия Endo VIII с DHU-субстратом

$$E + DHU \xrightarrow{k_1} (E \cdot DHU)_1 \xrightarrow{k_2} (E \cdot DHU)_2 \xrightarrow{k_3}$$

$$k_2 \times E \cdot DHU)_2 \xrightarrow{k_3} (E \cdot DHU)_2 \xrightarrow{k_3} (E \cdot DHU)_3 \xrightarrow{k_2} E \cdot P$$

$$k_{cut} \times K_{p} \times E \cdot P$$

где E – Endo VIII; DHU – DHU-субстрат;  $(E \cdot DHU)_n$  – различные фермент-субстратные комплексы, образующиеся в ходе узнавания 5,6-дигидроурацила;  $E \cdot P$  – комплекс E с продуктом реакции P;  $k_n$  и  $k_n$  – константы скорости прямых и обратных реакций отдельных стадий.

Для подтверждения кинетического механизма (схема 1) и уточнения природы отдельных стадий мы определили термодинамические параметры быстропротекающих стадий процесса взаимодействия Endo VIII с ДНК и специфического узнавания поврежденного нуклеотида, основываясь на кинетических параметрах, получаемых при разных температурах.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

## Олигодезоксирибонуклеотиды

Олигонуклеотиды очищали с помощью ВЭЖХ на ионообменной колонке (PRP-X500 Hamilton Company  $3.9\times300$  мм, размер частиц 12-30 мкм) и последующей обращенно-фазовой хроматографии (Nucleopreр 100-20 С $_{18}$   $10\times250$  мм, Macherey-Nagel, Германия). Чистоту олигонуклеотидов проверяли с помощью денатурирующего электрофореза в 20% полиакриламидном геле (ПААГ). Концентрацию олигонуклеотидов определяли по оптической плотности растворов на длине волны 260 нм в электронных спектрах поглощения и коэффициентов молярной экстинкции, рассчитанных в приближении метода «ближайших соседей» [10].

В качестве ДНК-субстратов использовали 17-звенные ДНК-дуплексы (табл. 1), содержащие в комплементарной цепи напротив специфического сайта вместо остатка цитозина флуорофор 1,3-диаза-2-оксофеноксазин (tC°). Специфическим сайтом служил остаток 5,6-дигидроуридина, выступающий в качестве поврежденного основания, и F-сайт, ко-

Таблица 1. Последовательность олигодезоксирибонуклеотидов в составе ДНК-дуплексов

| Название                                                                      | Последовательность                                                           |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <b>DHU-DNA</b> , X = DHU<br><b>F-DNA</b> , X = F-сайт<br><b>G-DNA</b> , X = G | 5'-TCTCTCTC <b>X</b> CCTTCCTT-3'<br>3'-AGAGAGAG(tC <sup>o</sup> )GGAAGGAA-5' |

торый является аналогом промежуточного продукта ферментативной реакции — апуринового/апиримидинового сайта (АР-сайта). В качестве неповрежденной ДНК использовали дуплекс, не содержащий модифицированных нуклеотидов.

#### Эндонуклеаза VIII

Endo VIII выделена из линии клеток E. coli Rosetta II (DE3), трансформированных плазмидой рЕТ-24b, несущей ген фермента. Культуру клеток E. coli Rosetta II (DE3) наращивали в среде LB (1 л), содержащей 50 мкг/мл ампициллина, при температуре 37°C до оптической плотности 0.6-0.7 при длине волны 600 нм. После этого температуру понижали до 30°C, транскрипцию индуцировали добавлением изопропил-β-D-тиогалактопиранозида до 0.2 мМ. После индукции культуру клеток инкубировали в течение 8 ч. Затем клетки осаждали центрифугированием (10 мин, 12000 об/мин), и готовили суспензию клеток в 30 мл буферного раствора (20 мМ HEPES-NaOH, рН 7.8, 40 мМ NaCl). Клетки лизировали при помощи френчпресса (French Press Cell, Thermo Fisher Scientific, США). Все последующие процедуры проводили при 4°С. Лизат клеток центрифугировали (40 мин при 30 000 об/мин), супернатант наносили на колонку I (Q-Sepharose Fast Flow, Amersham Biosciences, Швеция) и промывали буферным раствором (20 мМ HEPES-NaOH, pH 7.8, 40 мМ NaCl). Фракции, содержащие белок, собирали и наносили на колонκy II (HiTrap-Heparin™, Amersham Biosciences, Швеция). Хроматографию проводили в линейном градиенте 40 → 1500 мМ NaCl, оптическую плотность раствора регистрировали при длине волны 280 нм. Степень чистоты белка определяли с помощью гельэлектрофореза. Фракции, содержащие белок Endo VIII, диализовали в буфере 20 мМ НЕРЕS-NaOH, pH 7.5, 1 мМ EDTA, 1 мМ дитиотреит, 250 мМ NaCl, 50% глицерин и хранили при −20°С. Концентрацию фермента рассчитывали из значения оптической плотности белка на длине волны 280 нм и коэффициента молярной экстинкции 32680 M<sup>-1</sup>×см<sup>-1</sup> [11].

## Кинетические исследования методом «остановленного потока»

Кинетические кривые регистрировали по изменению интенсивности флуоресценции  $tC^{\scriptscriptstyle O}$  на спектрометре

остановленной струи SX.20 (Applied Photophysics, Великобритания). Длина волны возбуждения флуоресценции  $tC^o$  составляла 360 нм. Регистрацию флуоресценции проводили на длинах волн более 395 нм (Schott filter GG 395). Мертвое время прибора составляло 1.4 мс, максимальное время регистрации сигнала — 500 с. Все эксперименты выполнены в буферном растворе 50 мМ Трис-HCl, pH 7.5, 50 мМ KCl, 1 мМ дитиотреит, 1 мМ EDTA, 7% глицерин при температурах от 5 до  $25^{\circ}$ С. Каждую кинетическую кривую усредняли, как минимум, по трем экспериментальным кривым.

#### Анализ кинетических кривых

Для расчета констант скорости конформационных переходов получали набор кинетических кривых для разных концентраций фермента при разных температурах. Интенсивность флуоресценции tC<sup>o</sup> регистрировали в условиях, близких к «одному обороту фермента», т.е. при концентрациях фермента и субстрата одного порядка. Для определения минимальной кинетической схемы, описывающей взаимодействие фермента с субстратом, и расчета констант скорости всех элементарных реакций, соответствующих данной схеме, использовали программу DynaFit (BioKin, CIIIA) [12]. Количественную обработку результатов проводили путем оптимизации значений параметров, входящих в кинетические схемы, как описано ранее [13—16].

Используя полученные значения констант скорости прямых и обратных реакций для отдельных обратимых стадий, рассчитывали константы равновесия  $K_{\rm i}$  этих стадий ( $K_{\rm i}=k_{\rm i}/k_{\rm -i}$ , где i — номер стадии) для разных температур. Стандартные термодинамические параметры i-й равновесной стадии определяли с помощью уравнения Вант-Гоффа (1) [17, 18] как описано ранее [19—23].

$$ln(K_{i}) = -\Delta G_{i}^{\circ}/RT = -\Delta H_{i}^{\circ}/RT + \Delta S_{i}^{\circ}/R.$$
 (1)

Анализ температурной зависимости константы скорости химической реакции  $k_{\rm cat}$  по уравнению Эйринга (2) позволил рассчитать стандартную энтальпию активации ( $\Delta {\rm H}^{\rm o, \ddagger}$ ) и стандартную энтропию активации ( $\Delta {\rm S}^{\rm o, \ddagger}$ ), соответствующих образованию переходного состояния [17].

$$\ln(k_{cot}/T) = \ln(k_{R}/h) + (\Delta S^{o,\ddagger}/R) - (\Delta H^{o,\ddagger}/RT), \quad (2)$$

где  $k_{\rm B}$  и h — постоянные Больцмана и Планка соответственно, R — универсальная газовая постоянная, T — абсолютная температура в градусах Кельвина,  $k_{\rm cat}$  — константа скорости необратимой каталитической стадии.

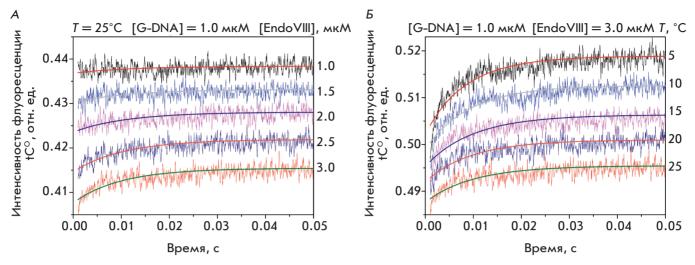



Рис. 3. Взаимодействие Endo VIII с неповрежденным дуплексом G-DNA. A – экспериментальные кинетические кривые изменения интенсивности флуоресценции  ${}^{1}$ С $^{0}$  и расчетные кривые, полученные путем обработки данных согласно  $cxeme\ 2$ . [G-DNA] = 1.0 мкM, концентрация Endo VIII изменяется от 1.0 до 3.0 мкM. B — сравнение кинетических кривых, полученных при взаимодействии 1.0 мкM G-DNA и 3.0 мкM Endo VIII при разных температурах

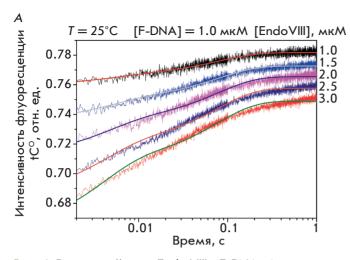
Таблица 2. Константа равновесия и константы скорости, характеризующие взаимодействие Endo VIII с неповрежденным дуплексом G-DNA

| Константы                                                                                       | Температура, °С           |                           |                           |                           |                           |
|-------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                                                                                 | 5                         | 10                        | 15                        | 20                        | 25                        |
| $k_{\scriptscriptstyle 1},\mathrm{M}^{\scriptscriptstyle -1}\mathrm{c}^{\scriptscriptstyle -1}$ | (16±7)×10 <sup>6</sup>    | (16±8)×10 <sup>6</sup>    | (15±9)×10 <sup>6</sup>    | $(14\pm6)\times10^{6}$    | $(9\pm2)\times10^{6}$     |
| $k_{-1},\mathrm{c}^{-1}$                                                                        | 50±30                     | 60±40                     | 50±20                     | 60±40                     | 40±10                     |
| $K_{_{1}},\mathrm{M}^{_{-1}}$                                                                   | $(0.31\pm0.21)\times10^6$ | $(0.26\pm0.21)\times10^6$ | $(0.29\pm0.20)\times10^6$ | $(0.25\pm0.18)\times10^6$ | $(0.19\pm0.08)\times10^6$ |

## РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

# Взаимодействие Endo VIII с неповрежденным ДНК-дуплексом G-DNA

На рис. 3А представлены кинетические кривые для процесса взаимодействия Endo VIII с ДНК-дуплексом G-DNA, содержащим остаток гуанина напротив флуорофорной группы tC<sup>O</sup>, полученные путем регистрации изменений интенсивности флуоресценции tC<sup>O</sup> в ходе реакции. На кинетических кривых можно выделить одну фазу роста интенсивности флуоресценции, которая выходит на плато. При увеличении температуры выход на плато данного изменения сдвигается с ~30 мс при 5 до ~20 мс при 25°C (рис. 3Б). Полученные кинетические кривые удовлетворительно описываются одностадийной равновесной кинетической схемой 2. Константы скорости, характеризующие эту стадию, представлены в табл. 2.


Cxema 2. Кинетический механизм взаимодействия Endo VIII с неповрежденным ДНК-дуплексом

$$E + G \xrightarrow{k_1} E \cdot G$$

где E — фермент Endo VIII, G — ДНК-дуплекс, содержащий остаток гуанина напротив флуорофорной группы  $tC^{\circ}$ , E · G — комплекс Endo VIII с ДНК-дуплексом,  $k_{_{1}}$  и  $k_{_{-1}}$  — константы скорости прямой и обратной реакций.

# Взаимодействие Endo VIII с аналогом AP-сайта F-DNA

Взаимодействие Endo VIII с AP-сайтом в ДНК изучено с использованием ДНК-дуплекса, содержащего нерасщепляемый аналог АР-сайта (производное тетрагидрофурана F) и флуорофорную группу tC<sup>O</sup> напротив повреждения в комплементарной цепи (рис. 4). На кинетических кривых, представленных на рис. 4, можно выделить две фазы роста интенсивности флуоресценции tC°. Первая фаза роста происходит в том же временном диапазоне (до ~ 20 мс), как и в случае взаимодействия с неповрежденным G-DNA. Повидимому, в начальный момент времени в структуре ДНК-дуплексов, содержащих и G-, и F-сайт, происходит одно и то же конформационное превращение, вызванное связыванием с Endo VIII. Однако в случае F-лиганда имеется вторая стадия роста интенсивности флуоресценции tC<sup>o</sup>, которая завершается к 1-й секунде при всех температурах (рис. 4). Кроме того,



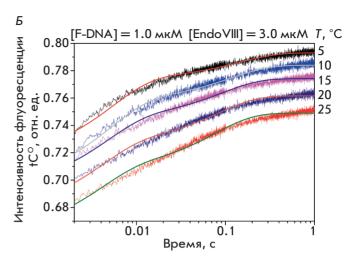



Рис. 4. Взаимодействие Endo VIII с F-DNA. A – экспериментальные кинетические кривые изменения интенсивности флуоресценции  $tC^{\circ}$  и расчетные кривые, полученные в ходе обработки данных согласно  $cxeme\ 3$ ; [F-DNA] = 1.0 мкM, концентрация Endo VIII изменяется от 1.0 до 3.0 мкM. E – сравнение кинетических кривых, полученных при взаимодействии 1.0 мкM F-DNA и 3.0 мкM Endo VIII при разных температурах

Таблица 3. Константы равновесия и константы скорости, характеризующие взаимодействие фермента Endo VIII и F-DNA

| Константы                                                                                       | Температура, °С         |                           |                         |                         |                         |  |
|-------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|--|
| Константы                                                                                       | 5                       | 10                        | 15                      | 20                      | 25                      |  |
| $k_{\scriptscriptstyle 1},\mathrm{M}^{\scriptscriptstyle -1}\mathrm{c}^{\scriptscriptstyle -1}$ | (35±9)×10 <sup>6</sup>  | (35±5)×10 <sup>6</sup>    | $(37\pm5)\times10^6$    | $(39\pm5)\times10^{6}$  | (40±8)×10 <sup>6</sup>  |  |
| $k_{-1},  \mathrm{c}^{-1}$                                                                      | 89±22                   | 99±18                     | 109±28                  | 129±43                  | 144±46                  |  |
| $K_1,{ m M}^{-1}$                                                                               | $(0.4\pm0.1)\times10^6$ | $(0.35\pm0.08)\times10^6$ | $(0.3\pm0.1)\times10^6$ | $(0.3\pm0.1)\times10^6$ | $(0.3\pm0.1)\times10^6$ |  |
| $k_2$ , $c^{-1}$                                                                                | 0.3±0.1                 | 0.9±0.3                   | 1.4±0.2                 | 3±1                     | 3±1                     |  |
| $k_{-2},  \mathrm{c}^{-1}$                                                                      | 7±2                     | 8±1                       | 10±1                    | 11±1                    | 12±1                    |  |
| $K_2$                                                                                           | 0.04±0.02               | 0.11±0.03                 | 0.13±0.02               | 0.24±0.09               | 0.26±0.08               |  |

изменения на кинетических кривых взаимодействия F-содержащего ДНК-дуплекса с Endo VIII имеют большую амплитуду, чем в случае G-DNA, что может говорить как о большей эффективности образования комплекса между ферментом и ДНК, так и о более значительных конформационных перестройках в структуре ДНК-дуплекса, содержащего F-сайт.

В результате обработки полученных данных определена минимальная кинетическая схема реакции, включающая две обратимые стадии образования фермент-субстратного комплекса (схема 3). Рассчитанные константы скорости реакций и константы равновесия приведены в табл. 3.

Cxeмa 3. Кинетический механизм взаимодействия Endo VIII с F-DNA

$$E + F \xrightarrow{k_1} (E \cdot F)_1 \xrightarrow{k_2} (E \cdot F)_2$$

где E — фермент Endo VIII, F — ДНК-дуплекс, содержащий F-сайт напротив флуорофорной группы  $tC^{\circ}$ ,  $(E \cdot F)_{i}$  — комплексы Endo VIII с F-DNA,  $k_{i}$  и  $k_{i}$  — константы скорости прямых и обратных реакции каждой стадии.

## Взаимодействие Endo VIII с DHU-DNA

На puc.~5A представлены кинетические кривые, полученные при взаимодействии Endo VIII с ДНК-субстратом, содержащим 5,6-дигидроуридин (DHU-DNA). Они имеют более сложный вид, чем в случае G-DNA и F-DNA. Во всех концентрационных сериях, полученных при разных температурах ( $5-25^{\circ}$ C), можно выделить сходные изменения интенсивности флуоресценции  $tC^{\circ}$  (puc.~5E).

Анализ кинетических кривых, полученных при  $5-15^{\circ}$ С, показал, что на начальном участке (до 10 мс) происходит быстрый рост интенсивности флуоресценции  $tC^{\circ}$  (фаза 1). При увеличении температуры это изменение интенсивности флуоресценции практически пропадает. Вслед за 1-й фазой роста можно выделить дальнейшее увеличение флуоресцентного сигнала при всех температурах. Длительность 2-й фазы роста снижалась с ростом температуры от  $\sim 300$  мс при  $5^{\circ}$ С до  $\sim 80$  мс при  $25^{\circ}$ С.

Известно, что при связывании Endo VIII с ДНК происходит нарушение структуры двойной спирали ДНК, выворачивание поврежденного нуклеотида и встраивание нескольких аминокислотных остатков

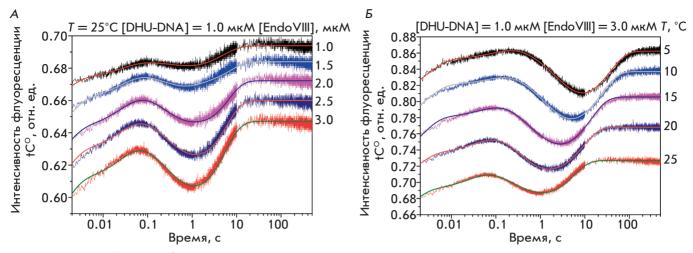



Рис. 5. Взаимодействие Endo VIII с DHU-DNA. A – экспериментальные кинетические кривые изменения интенсивности флуоресценции  $tC^{\circ}$  и расчетные кривые, полученные путем обработки данных согласно  $ext{cxeme 1}$ ; [DHU-DNA] = 1.0 мкM, концентрация Endo VIII изменяется от 1.0 до 3.0 мкM. E – сравнение кинетических кривых, полученных при взаимодействии 1.0 мкM DHU-DNA и 3.0 мкM Endo VIII при разных температурах

фермента в двойную цепь ДНК [6]. Endo VIII формирует обширную сеть контактов с ДНК, но при узнавании поврежденного нуклеотида наиболее значимы контакты, образуемые аминокислотными остатками триады Gln69–Leu70–Tyr71.

На всех полученных кривых можно выделить фазу падения интенсивности флуоресценции tC° (фаза 3). Эта фаза имеет выраженную зависимость от температуры. Так, при 5°C фаза падения интенсивности флуоресценции tC° длится до 10 с, а при 25°C лишь до 1 с. Такое изменение соответствует еще одной стадии, протекающей при образовании фермент-субстратного комплекса. Поскольку снижение интенсивности флуоресценции tC° указывает на изменение микроокружения данной флуорофорной группы, можно предположить, что в этот момент времени происходит подстройка конформаций фермента и ДНК для образования каталитически компетентного фермент-субстратного комплекса.

Вслед за падением интенсивности флуоресценции  $tC^{\circ}$  наблюдается увеличение флуоресцентного сигнала (фаза 4), сопровождающееся выходом на плато (фаза 5). Скорее всего, 4-я фаза изменения интенсивности флуоресценции отражает каталитические стадии ферментативного процесса, а 5-я — диссоциацию комплекса фермента с продуктом реакции.

Таким образом, в кинетических кривых взаимодействия эндонуклеазы VIII с ДНК-субстратом, содержащим остаток 5,6-дигидроуридина, выявлены пять фаз изменения интенсивности флуоресценции tC°. Минимальная кинетическая схема, описывающая кинетические кривые, включает три обратимые стадии, ведущие к образованию фермент-субстратного комплекса, одну необратимую стадию, которую можно соотнести со стадией каталитической реакции, и одну обратимую стадию диссоциации комплекса фермент-продукт (*cxema 1*). Рассчитанные значения констант скорости отдельных стадий и констант равновесия приведены в *maбл. 4*.

# Термодинамические параметры взаимодействия Endo VIII с ДНК-субстратами

Константы скорости отдельных стадий взаимодействия Endo VIII со всеми ДНК-субстратами при разных температурах использовали для расчета констант равновесия этих стадий ( $K_i$ ). Константы равновесия отдельных стадий использовали для получения зависимости  $\ln(K_i)$  от 1/T (уравнение Вант-Гоффа (1)) (puc. 6). Также получена зависимость  $\ln(k_{\rm cat}/T)$  от 1/T (уравнение Эйринга (2)), характеризующая необратимую каталитическую стадию в случае DHU-субстрата. Все зависимости имели линейный вид и позволили рассчитать изменения энтальпии и энтропии для обратимых стадий ( $\Delta H_i^{\rm o}$  и  $\Delta S_i^{\rm o}$ ) и образования переходного состояния каталитической стадии ( $\Delta H^{\rm o, \ddagger}$  и  $\Delta S^{\rm o, \ddagger}$ ) (maб n. 5).

При анализе термодинамических параметров взаимодействия Endo VIII с ДНК-субстратами удалось выделить некоторые общие особенности. Так, первичное связывание всех использованных ДНК-субстратов с ферментом сопровождается небольшим уменьшением энтальпии и повышением энтропии. Это приводит к отрицательному значению изменения энергии Гиббса  $\Delta G_1^{\circ}$  для первой стадии образования фермент-субстратного комплекса. При этом величина  $\Delta G_{1,298}^{\circ}$  имеет близкое значение (от -7.0 до -7.4 ккал/моль) как для поврежденной, так и неповреж-

## ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Таблица 4. Константы равновесия и константы скорости, характеризующие взаимодействие фермента Endo VIII и DHU-DNA

|                       | Константы                                                         | Температура, °C           5         10         15         20         25 |                             |                                                               |                             |                                           |  |
|-----------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|-----------------------------|-------------------------------------------|--|
|                       |                                                                   | 5                                                                       | 5 10                        |                                                               | 20                          | 25                                        |  |
|                       | $k_1$ , M <sup>-1</sup> c <sup>-1</sup>                           | 35±7                                                                    | 40±6                        | 45±7                                                          | 61±4                        | 80±13                                     |  |
|                       | $k_{-1}$ , $c^{-1}$                                               | 230±30                                                                  | 270±40                      | 320±10                                                        | 440±70                      | 580±50                                    |  |
|                       | $K_1,  \mathbb{M}^{-1}$                                           | $(0.149\pm0.038)\times10^6$                                             | $(0.147\pm0.032)\times10^6$ | $(0.140\pm0.023)\times10^6$                                   | $(0.140\pm0.025)\times10^6$ | $(0.138\pm0.027)\times10^6$               |  |
|                       |                                                                   |                                                                         | 1.7±0.1                     | 2.6±0.4                                                       | 3.6±0.6                     | 4±1                                       |  |
|                       | $k_{-2},  \mathrm{c}^{-1}$ 0.34±0.08 0.62±0.03                    |                                                                         | 0.62±0.03                   | $0.9 \pm 0.7$                                                 | 1.2±1                       | 1.3±0.3                                   |  |
|                       | $K_2$                                                             | $2.72\pm0.94$                                                           | $2.76 \pm 0.24$             | 2.83±2                                                        | 3.0±2.7                     | 3.0±1                                     |  |
|                       | $k_3$ , e <sup>-1</sup>                                           | 6.5±1.4                                                                 | 8.1±0.6                     | 12±2                                                          | 18±4                        | 29±3                                      |  |
|                       | $k_{-3},\mathrm{c}^{-1}$                                          | 1.6±0.3                                                                 | 1.9±0.6                     | $2.5 \pm 0.6$                                                 | 3±1                         | 4.4±1.6                                   |  |
|                       | $K_3$                                                             | 4±1                                                                     | 4.3±1.4                     | 4.6±1.3                                                       | 5.3±1.9                     | 6.6±2.5                                   |  |
|                       | $k_{ m cat},{ m c}^{\scriptscriptstyle -1}$                       | $0.06\pm0.02$                                                           | $0.09\pm0.05$               | $0.15\pm0.05$                                                 | 0.22±0.08                   | 0.34±0.02                                 |  |
|                       | $K_5$ , ${ m M}^{1}$ ${ m c}^{1}$                                 | $(0.06\pm0.03)\times10^6$                                               | $(0.047\pm0.019)\times10^6$ | $(0.042\pm0.016)\times10^6$                                   | $(0.038\pm0.010)\times10^6$ | $(0.034\pm0.18)\times10^6$                |  |
| ln(K <sub>1</sub> ) b | 12.7<br>12.6-<br>12.5-<br>12.4-<br>12.3-<br>12.2-<br>12.1 3.35 3. | 40 3.45 3.50 3.<br>1000K/T                                              | (E · G) <sub>1</sub>        | 5 13.0<br>12.8<br>12.6<br>12.4<br>12.2<br>12.0<br>2<br>3.35 3 | .40 3.45 3.50 3<br>1000K/T  | (E · F) <sub>1</sub> (E · F) <sub>2</sub> |  |
| In(K <sub>i</sub> )   | 12-                                                               |                                                                         | (E · DHU), (E · P)          | -7.0-<br>-7.2-<br>-7.4-<br>-7.6-<br>-7.8-                     |                             |                                           |  |

Рис. 6. Зависимость  $\ln(K_i)$  от 1/T, характеризующая различные стадии взаимодействия Endo VIII с неповрежденной G-DNA (A), F-DNA (Б) и DHU-DNA (B). Зависимость  $\ln(k_{\text{cat}}/T)$  от 1/T, характеризующая образование переходного состояния каталитической стадии при взаимодействии Endo VIII с DHU-субстратом ( $\Gamma$ )

денной ДНК, что указывает на выгодное в энергетическом плане взаимодействие фермента с ДНК.

3.50

1000K/T

3.55

3.60

3.45

1.0-0.5-

3.35 3.40

Величины термодинамических параметров первой стадии, полученные для G-DNA, F-DNA и DHU-DNA, свидетельствуют о том, что начальная стадия взаимодействия (до 10 мс) Endo VIII со всеми

ДНК-дуплексами представляет собой один и тот же процесс. На стадии первичного связывания не образуются специфические контакты с поврежденным нуклеотидом. Узнавание поврежденного нуклеотида происходит позднее — при его выворачивании из спирали ДНК и внедрении в спираль аминокис-

3.45 3.50

1000K/T

3.55

3.35 3.40

Таблица 5. Термодинамические параметры взаимодействия Endo VIII с ДНК-субстратами

| ДНК-<br>субстрат    | Номер<br>стадии    | $\Delta { m H_{i}^{o}},$ ккал/моль | $\Delta S_{_{\mathrm{i}}}^{\circ},$ кал/(моль $	imes K$ ) | $\Delta \mathrm{G}^{\circ}_{_{i,298}},$ ккал/моль | Описание стадии <sup>а</sup>                                                                                |
|---------------------|--------------------|------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| G/tC <sup>o</sup>   | 1                  | $-3.6 \pm 0.9$                     | 12 ± 3                                                    | -7.2                                              | Первичное связывание, попытка вклинивания остатка ${ m Leu70},$ увеличение полярности окружения ${ m tC^o}$ |
| F/tC <sup>o</sup>   | 1                  | $-2.8 \pm 0.3$                     | 16 ± 1                                                    | -7.4                                              | Первичное связывание, вклинивание остатка Leu $70$ , увеличение полярности окружения $tC^{\circ}$           |
|                     | 2                  | 15 ± 3                             | 47 ± 9                                                    | 0.8                                               | Изгибание двойной спирали, увеличение полярности<br>окружения tC <sup>o</sup>                               |
|                     | $\sum_{i=1}^{i=2}$ | 12.2±3.3                           | $60 \pm 10$                                               | -6.6                                              |                                                                                                             |
| DHU/tC <sup>o</sup> | 1                  | $-0.7 \pm 0.1$                     | $21.3 \pm 0.4$                                            | -7.0                                              | Первичное связывание, увеличение полярности окружения tC <sup>o</sup>                                       |
|                     | 2                  | $1.0 \pm 0.2$                      | $5.5 \pm 0.6$                                             | -0.65                                             | Изгибание двойной спирали, увеличение полярности окружения tC <sup>o</sup>                                  |
|                     | 3                  | $3.9 \pm 0.7$                      | $17 \pm 2$                                                | -1.1                                              | Образование каталитического комплекса, уменьшение полярности окружения ${ m tC^{O}}$                        |
|                     | $\sum_{i=1}^{i=3}$ | 4.2                                | 43.8                                                      | -8.75                                             |                                                                                                             |
|                     | 4 <sup>6</sup>     | $14.4 \pm 0.1$                     | $-12.4 \pm 0.5$                                           | 18                                                | Катализ, увеличение полярности окружения tC <sup>o</sup>                                                    |
|                     | 5                  | $-4.5 \pm 0.6$                     | 5 ± 2                                                     | -6.2                                              | Образование комплекса с продуктом реакции, увеличение полярности окружения ${ m tC^O}$                      |

 $<sup>^{</sup>a}$ На основании данных [7-9].

лотных остатков «триады» Gln69-Leu70-Туг71. Тем не менее, установлено [9], что Endo VIII использует Leu70 в качестве «сенсора» повреждений, и его интеркаляция в структуру дуплекса происходит на ранних этапах специфического фермент-субстратного взаимодействия. Поэтому можно предположить, что рост интенсивности флуоресценции tC<sup>O</sup> на начальном участке всех кинетических кривых отражает локальные конформационные изменения ДНК-дуплекса при вклинивании остатка Leu70 в двойную спираль.

Термодинамический анализ второй стадии связывания Endo VIII с ДНК-дуплексами, зарегистрированной в случае F- и DHU-содержащих дуплексов, выявил различие в протекании этой стадии. Положительное значение  $\Delta G^{\circ}_{\ _{2},_{298}}$  в случае F-DNA говорит о невыгодности этого процесса, который, повидимому, не протекает при низких температурах. В случае DHU-содержащего субстрата вторая стадия образования фермент-субстратного комплекса является энергетически нейтральной, значение  $\Delta G^{\circ}_{_{2},_{208}}$  составляет -0.65 ккал/моль. У обоих ДНКдуплексов эта стадия сопровождается увеличением  $\Delta H^{\circ}$  и  $\Delta S^{\circ}$ . Согласно полученным ранее данным, на этой стадии происходит изгибание дуплекса, которое должно сопровождаться выворачиванием поврежденного нуклеотида в активный центр фермента и полным встраиванием всех остатков триады Gln69-Leu70-Tyr71 в двойную спираль ДНК [8].

На третьей стадии взаимодействия Endo VIII с DHU-субстратом, которая предшествует каталитической реакции, происходит окончательная подстройка структуры активного центра для осуществления каталитической стадии. Значительный рост энтропии на этой стадии, скорее всего, связан с десольватацией полярных групп в области контакта фермент-ДНК, а также вытеснением молекул воды из бороздок ДНК-субстрата. Положительная величина изменения энтальпии  $\Delta H^{\circ}$  свидетельствует о затратах энергии для создания каталитически активной конформации. Затем следует необратимая каталитическая стадия (стадия 4), в ходе которой гидролизуется N-гликозидная связь с поврежденным основанием и в сахарофосфатном остове ДНК с 3'- и 5'-стороны от поврежденного нуклеотида образуется разрыв. Каталитическая стадия протекает с большими затратами энергии, на что указывают положительные значения  $\Delta G^{\circ,\frac{1}{2}}$  = 18.0 ккал/моль и  $\Delta H^{0,\ddagger} = 14.4$  ккал/моль. Последняя стадия взаимодействия Endo VIII с DHU-содержащим субстратом - диссоциация комплекса фермента с продуктом. Необходимо отметить, что  $\Delta G^{\circ}_{298}$  (-6.2 ккал/моль) этой стадии имеет близкое значение с  $\Delta G^{\circ}_{_{298}}$  первичного связывания ДНК (от -7.0 до -7.4 ккал/моль).

<sup>&</sup>lt;sup>6</sup>Параметры, рассчитанные по уравнению Эйринга (2).

#### **ЗАКЛЮЧЕНИЕ**

Для всех использованных в работе ДНК-субстратов ДНК-гликозилазы Endo VIII зарегистрированы изменения интенсивности флуоресценции 1,3-диаза-2оксофеноксазина  $tC^{\circ}$  в составе пары  $X:tC^{\circ}$  (X = G, F, DHU). Показано, что первая фаза роста интенсивности флуоресценции tC<sup>o</sup> присутствует на кинетических кривых, полученных со всеми использованными субстратами. Согласно полученным термодинамическим параметрам, эта стадия отражает одну и ту же стадию первичного связывания Endo VIII с ДНК. По данным [7-9], эта стадия представляет собой закрытие доменов фермента и попытку встраивания Leu70 в двойную спираль ДНК. Вторая фаза роста интенсивности флуоресценции зарегистрирована только в случае ДНК-дуплексов, несущих поврежденный нуклеотид F или DHU. Это изменение соответствует стадии образования второго фермент-субстратного комплекса. Вероятно, на этой стадии происходит выворачивание поврежденного нуклеотида в активный центр Endo VIII и встраивание аминокислотных остатков фермента Endo VIII в двойную спираль ДНК. У DHU-DNA эта стадия продолжается вплоть до 1 с. Интересно отметить, что при этом происходит рост и энтальпии, и энтропии, однако изменение энергии Гиббса  $\Delta G^{_{^{0}}}_{_{;\;298}}$  на этой стадии близко к нулю (0.8 и -0.65 ккал/моль для F-DNA и DHU-DNA соответственно). Следовательно, энергетические затраты на изменение структуры молекул фермента и ДНК-субстрата компенсируются за счет роста энтропии системы. На кинетических кривых (рис. 5), полученных для DHU-

содержащего дуплекса, видно, что за двумя фазами роста интенсивности флуоресценции tC<sup>O</sup> следует фаза падения, отражающая образование третьего ферментсубстратного комплекса. На этой стадии осуществляется окончательная проверка строения поврежденного нуклеотида и формирование каталитически активного комплекса. Интенсивность флуоресценции tC<sup>0</sup> при этом становится минимальной, что говорит о формировании наиболее гидрофобного окружении флуорофорной группы. Кроме того, эта стадия сопровождается ростом энтропии, свидетельствующим, вероятно, о вытеснении молекул воды из области контакта фермент-субстрат и, следовательно, компактизации фермент-субстратного комплекса. Значения термодинамических параметров быстропротекающих стадий процесса взаимодействия Endo VIII с ДНК согласуются с ранее полученными данными о механизме узнавания и превращения специфического сайта ферментом [7-9]. Относительные изменения термодинамических параметров отдельных быстропротекающих стадий ферментативного процесса, катализируемого ДНК-гликозилазой Endo VIII, согласуются с величинами, полученными нами ранее для других ДНК-гликозилаз Fpg [19], hOGG1 [20] и Nth [22].

Работа выполнена при поддержке бюджетного финансирования (№ VI.57.1.2, 0309-2016-0001). За счет средств гранта РНФ № 18-14-00135 выполнен предстационарный кинетический анализ взаимодействия фермента с ДНК-субстратами.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Jiang D., Hatahet Z., Melamede R.J., Kow Y.W., Wallace S.S. // J. Biol. Chem. 1997. V. 272.  $\mathbb{N}_2$  51. P. 32230-32239.
- 2. Melamede R.J., Hatahet Z., Kow Y.W., Ide H., Wallace S.S. // Biochemistry. 1994. V. 33.  $\mathbb{N}_2$  5. P. 1255–1264.
- 3. Burgess S., Jaruga P., Dodson M.L., Dizdaroglu M., Lloyd R.S. // J. Biol. Chem. 2002. V. 277. № 25. P. 2938–2944.
- 4. Kropachev K.Y., Zharkov D.O., Grollman A.P. // Biochemistry. 2006. V. 45. P. 12039–12049.
- 5. Golan G., Zharkov D.O., Feinberg H., Fernandes A.S., Zaika E.I., Kycia J.H., Grollman A.P., Shoham G. // Nucl. Acids Res. 2005. V. 33. № 15. P. 5006–5016.
- 6. Zharkov D.O., Golan G., Gilboa R., Fernandes A.S., Gerchman S.E., Kycia J.H., Rieger R.A., Grollman A.P., Shoham G. // EMBO J. 2002. V. 21. № 4. P. 789–800.
- 7. Kuznetsov N.A., Koval V.V., Zharkov D.O., Fedorova O.S. // DNA Repair. 2012. V. 11. № 11. P. 884–891.
- 8. Kuznetsova A.A., Kuznetsov N.A., Vorobjev Y.N., Barthes N.P.F., Michel B.Y., Burger A., Fedorova O.S. // PLoS One. 2014. V. 9. № 6. P. e100007.
- 9. Kladova O.A., Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. // Genes (Basel). 2017. V. 8. № 5. P. 1–13.
- 10. Fasman G.D. Handbook of Biochemistry and Molecular Biology, 3rd Ed.// Cleveland: CRC Press, 1975.
- 11. Gill S.C., von Hippel P.H. // Anal. Biochem. 1989. V. 182. P. 319–326.

- 12. Kuzmic P. // Anal. Biochem. 1996. V. 237. P. 260-273.
- 13. Yakovlev D.A., Kuznetsova A.A., Fedorova O.S., Kuznetsov N.A. // Acta Naturae. 2017. V. 9.  $\mathbb{N}_2$  1. P. 88–98.
- 14. Kuznetsova A.A., Iakovlev D.A., Misovets I.V., Ishchenko A.A., Saparbaev M.K., Kuznetsov N.A., Fedorova O.S. // Mol. Biosyst. 2017. V. 13. № 12. P. 2638–2649.
- 15. Kuznetsov N.A., Kiryutin A.S., Kuznetsova A.A., Panov M.S., Barsukova M.O., Yurkovskaya A.V., Fedorova O.S. // J. Biomol. Struct. Dyn. 2017. V. 35. № 5. P. 950–967.
- 16. Miroshnikova A.D., Kuznetsova A.A., Vorobjev Y.N., Kuznetsov N.A., Fedorova O.S. // Mol. BioSyst. 2016. V. 12. № 5. P. 1527–1539. 17. Atkins P., Paula J. Atkins' Physical Chemistry. 8th Ed.// Oxford university press, 2006.
- 18. Ragone R., Colonna G., Ambrosone L. // J. Phys. Chem. 1995. V. 99.  $\aleph_2$  34. P. 13050.
- 19. Kuznetsov N.A., Vorobjev Y.N., Krasnoperov L.N., Fedorova O.S. // Nucl. Acids Res. 2012. V. 40. № 15. P. 7384–7392.
- 20. Kuznetsov N.A., Kuznetsova A.A., Vorobjev Y.N., Krasnoperov L.N., Fedorova O.S. // PLoS One. 2014. V. 9. № 6. P. e98495.
- 21. Miroshnikova A.D., Kuznetsova A.A., Kuznetsov N.A., Fedorova O.S. // Acta Naturae. 2016. V. 8. № 1. P. 103-110.
- 22. Kladova O.A., Krasnoperov L.N., Kuznetsov N.A., Fedorova O.S. // Genes (Basel). 2018. V. 9. № 4. E190.
- 23. Kuznetsov N.A., Fedorova O.S. // Biochem. 2016. V. 81.  $\ensuremath{\mathbb{N}}\xspace$  10. P. 1136–1152.