INTRODUCTION

Atherosclerotic coronary artery lesions often lead to the development of a coronary artery disease (CAD) that manifests itself as angina or painless myocardial ischemia. This disease can last for years as stable coronary artery disease (SCAD) forms, with occasional exacerbations presenting themselves clinically as unstable angina or acute myocardial infarction (AMI). These clinical manifestations are grouped under the name of acute coronary syndrome (ACS). The morphological substrate of this exacerbation is supposed to be acute inflammation followed by atherosclerotic plaque rupture and thrombosis formation [1–3]. Despite the fact that the role of inflammation in the development and progression of atherosclerosis has been under discussion for the second century running since the time of Virchow [4], the causes of this inflammation are not completely clear. The very fact of an inflammation is confirmed by the presence of macrophages and lymphocytes in the plaques, an elevated level of inflammatory cytokines in atherosclerosis patients, etc. [5–10]. According to the most accepted theory, the primary trigger of an inflammatory reaction in the vascular wall is the subendothelial accumulation of oxidized low-density lipoproteins [11–13]. At the same time, there are data indicating that atherosclerotic plaques...
contain various bacteria and viruses [14–19] that can also induce an inflammatory response. Herpesviruses, in particular the cytomegalovirus (CMV), are of huge interest. Many epidemiological studies have revealed a relationship among the incidence of coronary atherosclerosis, the incidence of acute myocardial infarction, and the blood level of anti-CMV antibodies [20, 21]. However, this is insufficient to assess the viral infection activity during atherosclerosis exacerbation. An exception is a study by S. Gredmark et al. [22], demonstrating that CMV RNA in the monocytes of ACS patients occurs more often than in those of healthy donors and patients with chronic forms of CAD, which may indicate activation of the virus during ACS. At the same time, no direct analysis of the plasma CMV level in patients with atherosclerotic coronary artery disease has been previously performed. The presence of the virus in plasma may indicate its activation [23–25]. In this work, we present a comparative study of CMV in plasma of patients with various forms of CAD and healthy volunteers.

MATERIAL AND METHODS

Characterization of groups of patients and healthy volunteers

The study involved 150 participants, including 97 CAD patients and 53 healthy volunteers. Seventy-one patients were admitted to the Cardiac Critical Care Department of the Davydovskiy Municipal Clinical Hospital with a diagnosis of acute coronary syndrome. Of these, 47 patients were diagnosed with AMI with or without ST-segment elevation in accordance with the universal definition of the European Society of Cardiology [26]; unstable angina was diagnosed in 24 cases. Twenty-six patients were admitted electively. CAD was diagnosed based on the clinical picture and positive stress test results, which was later confirmed by coronary angiography [27]. In all patients, the clinical prognosis was evaluated; there were no cases of death, hemodynamically significant bleeding, stroke, or stent thrombosis. At admission, two ACS patients were diagnosed with cardiogenic shock; two patients had acute heart failure; 12 patients had acute left ventricular aneurysm; seven patients with a severe coronary artery disease had repeated angina attacks.

An examination of healthy volunteers included a survey, blood chemistry, ultrasound of the heart and carotid arteries, and a stress test. According to the examination data, no subjects with signs of atherosclerosis were identified in the control group.

Patient groups did not differ in age or gender, but they differed in the presence of risk factors, such as obesity, arterial hypertension, and diabetes (Table 1).

All participants provided a written informed consent to participate in this study. The study was approved by the local ethics committee of the Evdokimov Moscow State University of Medicine and Dentistry.

Isolation of viral DNA from plasma

In all patients, a 5-mL blood sample was collected into a test tube with sodium citrate within 24 h after admission. Blood samples were centrifuged at 2,500 rpm for 10 min, after which the plasma was collected, frozen in sterile test tubes, and stored at −80°C until further use.

The samples were thawed, and DNA was isolated from the plasma using QIAamp DNA Blood mini kit columns (Qiagen, Germany) according to a standard protocol. Elution was performed using 60 μL of a special buffer from the same kit. Before conducting the real-time polymerase chain reaction (RT-PCR), DNA samples were stored at −20°C.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>ACS patients</th>
<th>SCAD patients</th>
<th>Healthy volunteers</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>71</td>
<td>26</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Mean age</td>
<td>64.4 ± 9.7</td>
<td>66.3 ± 10.6</td>
<td>61.3 ± 12.3</td>
<td>0.116</td>
</tr>
<tr>
<td>Males</td>
<td>63.4%</td>
<td>65.4%</td>
<td>50.9%</td>
<td>0.298</td>
</tr>
<tr>
<td>Smoking</td>
<td>28.2%</td>
<td>11.5%</td>
<td>20.8%</td>
<td>0.205</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>35.2%</td>
<td>15.4%</td>
<td>34.0%</td>
<td>0.135</td>
</tr>
<tr>
<td>Obesity</td>
<td>45.1%</td>
<td>23.1%</td>
<td>15.1%</td>
<td>0.001</td>
</tr>
</tbody>
</table>
| Hypertension | 90.1% | 92.3% | 47.2% | 0.0002*
| Diabetes mellitus| 31.0% | 19.2% | 1.9% | |

The clinical characteristics of all three groups of patients are presented. *Differences are statistically significant at p < 0.05.
Quantitative RT-PCR
CMV was detected by RT-PCR (CFX 96 C1000 Touch Thermal Cycler, Bio-Rad, USA) using highly sensitive primers and a 5’-3’-hydrolyzable probe to the CMV tegument protein pp65 gene (Table 2). Amplification was evaluated from the standard curve using standard dilution series (Bioresearch Technologies, USA) and ToughMix PCR mixtures (Quanta, USA, Cat # 95147-250).

RT-PCR was performed according to the standard three-step protocol: step 1 – denaturation at 95°C for 5 min, step 2 – 95°C for 30 s, and step 3 – 60°C for 60 s. Next, the fluorescence signal was detected.

The second and third steps were again repeated for 45 cycles. Fluorescence detectable up to the 37th cycle was considered specific. The results were presented as the CMV DNA copy number in 1 μL of the patient blood plasma.

Measurement of the high-sensitivity C-reactive protein (hs-CRP)
At admission, all patients underwent an analysis of hs-CRP, whose level is correlated with the risk of cardiovascular events [28]. The protein plasma level was determined on an automatic analyzer (Siemens Dimention Xpand Plus, Germany) using a C-Reactive Protein Flex Reagent kit (Siemens # DF37, Germany).

Statistical data processing
The statistical analysis was performed using the Statistica 9.0 software. All obtained data had no signs of a normal distribution based on the Shapiro-Wilk test and, therefore, were represented as median and inter-quartile ranges. Because of the non-parametric distribution, the Mann-Whitney test was used for comparison between two groups. Non-parametric statistics with the Kruskal-Wallis test and multiple comparison rank test were used to compare more than two groups. The Spearman correlation coefficient was also used. Differences between groups were considered statistically significant at the level of p < 0.05.

RESULTS AND DISCUSSION
Small CMV DNA concentrations (over 100 copies in 1 μL of blood plasma) were quite frequently found both in patients and in healthy volunteers. The rate of virus detection in the three groups differed statistically significantly and was highest in ACS patients (Table 3).

Comparison of the number of CMV DNA copies in three groups revealed significant differences between ACS patients and healthy volunteers (213.15 [101.21–436.67] versus 82.10 [18.58–188.67], respectively, p = 0.012). However, no statistically significant differences between the group of chronic CAD patients and the group of healthy volunteers were found. The results are shown in Fig. 1. In addition, a statistically significant (p = 0.002) positive correlation between the number of CMV copies and the hs-CRP level was found in this cohort (Fig. 2).

Therefore, we had demonstrated that the occurrence and number of CMV copies in the blood plasma of patients with acute CAD forms were significantly higher than those in healthy controls. No differences between the chronic CAD group and the control group were found.

These findings demonstrate that a small amount of the virus is quite often present in the plasma of healthy individuals (Table 3). This is consistent with epidemiological study data on a CMV-seropositive adult population in various countries [24, 29–30]. Our data indicate that the number of CMV DNA copies can substantially increase in pathology: in the case of ACS, the number was more than 2 times higher than that in healthy volunteers. Our findings are generally consistent with

<table>
<thead>
<tr>
<th>Table 2. CMV primers and probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe/Primer</td>
</tr>
<tr>
<td>Probe</td>
</tr>
<tr>
<td>Forward primer</td>
</tr>
<tr>
<td>Reverse primer</td>
</tr>
</tbody>
</table>

*CAL Fluor Red 610 is a fluorescent label on the probe. **BHQ-2 is a fluorescence quencher.

Table 3. The CMV occurrence rate in different groups

<table>
<thead>
<tr>
<th>Number of virus-positive patients</th>
<th>Healthy volunteers</th>
<th>ACS patients</th>
<th>SCAD patients</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.15% (18/39)</td>
<td>77.08% (37/48)</td>
<td>55.56% (10/18)</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>
epidemiological data on the correlation between the presence of CMV and atherosclerosis progression, with allowance for the anti-CMV antibody titer [31]. For example, one of the epidemiological studies had revealed a correlation between cardiovascular disease mortality and the anti-CMV antibody titer level [17]. An ARIC study also showed that cardiovascular disease mortality was proportional to an increase in the carotid artery intima-media thickness [32]. However, results of seroepidemiological studies are contradictory. For example, a prospective, controlled study by P.M. Ridker et al. revealed no relationship between the presence of anti-CMV antibodies and the risk of atherothrombotic events. In this case, the antibody titer height was not evaluated separately [33].

Previously, the herpesvirus DNA was identified in plaques and blood monocytes by PCR [34]. Melnick et al. [35] demonstrated for the first time that CMV DNA was present in the artery walls of atherosclerosis patients. The viral DNA concentration was higher in the arterial wall of patients who underwent reconstructive vascular surgery (coronary artery bypass grafting) compared to patients with early atherosclerosis [36]. Later, CMV was found in the atherosclerotic plaques [37]. We also studied samples obtained from patients who had died of acute myocardial infarction or its complications, but we did not find significant differences in the number of CMV DNA copies in the atherosclerotic plaques and coronary arteries without macroscopic signs of atherosclerosis [38].

The inconsistency of these data may be associated with the fact that both CMV seropositivity and the presence of CMV DNA in tissues and blood cells are not sufficient to conclude on virus replication. In the present work, the number of CMV DNA copies was determined in the plasma of patients with various CAD forms. The presence of the virus in plasma indicates productive infection [23, 24, 29–30]. Another indicator of productive infection may be the presence of CMV RNA, which was detected in peripheral blood mononuclear cells [22]. The amount of CMV RNA in blood monocytes of ACS patients was significantly higher than that in stable angina patients and healthy subjects (p < 0.001). In this case, the occurrence of CMV RNA in monocytes was relatively small and amounted to 2% in healthy volunteers, 10% in SCAD patients, and 15% in ACS patients [22]. In general, these data are consistent with the results of our work. However, the occurrence rate of the virus in our groups was higher, possibly due to the fact that blood monocytes are not the only body cells secreting CMV into the plasma.

The morphological basis of ACS is an atherosclerotic plaque rupture, probably due to inflammation in the plaque. A number of studies using histochemical tech-
niques have demonstrated that the plaques contain activated lymphocytes and macrophages [11, 12, 39–42]. Previously, we used an original technique for isolation of cells from the plaque, preserving cell surface antigens, and their evaluation by flow cytometry [43]. This enabled us to quantitatively evaluate the number of activated lymphocytes (CD8+CD25+ and CD8+HLA-DR+) in the plaques, which happened to be significantly higher than that in the blood. In other studies, along with those by our group, a number of bacteria and viruses, including CMV, were found in blood vessels using RT-PCR [38]. This may be the cause of chronic activation of the immune system in vessels, stimulating the development of atherosclerosis [44]. The role of either oxidized lipoproteins or microorganisms in this activation remains unclear. It may not be excluded that detection of viruses in blood vessels is not related to atherosclerosis itself. They may be present in the vascular wall without playing any pathogenetic role in the development of this pathology. The data obtained in this study disprove this assumption: an elevated CMV DNA level in the plasma of ACS patients indicated enhanced virus replication upon atherosclerosis exacerbation. It is not clear whether the CMV activation plays the major role in the atherosclerosis progression, or other microorganisms may also be involved in this process. Also, the relationship between two factors, CMV reproduction and hyperlipidemia, has not been determined yet. A combination of both mechanisms is possible: CMV reproduction in the plaque may be accompanied by more active lipoprotein accumulation by macrophages. Lipoproteins subjected to oxidation, in turn, may enhance inflammatory reactions in the vascular wall. To answer these questions, further research is needed. The promising area seems to be further analysis of the CMV plasma level in patients with various forms of coronary atherosclerosis and comparison of the virus level with changes in the disease clinical picture.

CONCLUSION

Thus, we have demonstrated the fact of CMV activation in ACS patients. The number of CMV DNA copies in the plasma is correlated with the level of hs-CRP, a systemic inflammation marker. CMV activation is probably one of the mechanisms triggering the inflammatory process in the atherosclerotic plaque, which leads to disruption of the plaque integrity and subsequent thrombus formation. Further investigation of the mechanisms of CMV effects on atherosclerosis progression may be helpful in developing new approaches to the treatment of CAD.

This work was supported by a grant of the Ministry of Education and Science of the Russian Federation (o. 14.V25.31.0016).

Collaborative research by J.-C. Grivel and L.B. Margolis was supported by an internal program of the U.S. National Institutes of Health.

REFERENCES

ABSTRACT The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC₅₀ values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment.

KEYWORDS PARP inhibitors, molecular modeling, docking.

INTRODUCTION Exposure of a human organism to different stress factors induces genotoxic DNA lesions that should be removed in order to ensure complete and accurate DNA replication and transcription, to avoid genomic instability, and to prevent, for example, cancer formation. Cellular repair pathways involve numerous proteins that recognize and clear DNA base modifications and DNA strand breaks [1]. Poly(ADP-ribose)polymerases (PARP; EC 2.4.2.30) are a group of eukaryotic proteins with diverse functions mainly related to DNA repair and cell death. The most studied PARP family members, PARP-1 and PARP-2, have DNA-damage-dependent enzymatic activity and catalyze the synthesis of poly(ADP-ribose) [2]. The donor of the ADP-ribose unit in the polymer synthesis is the NAD⁺ molecule, and nicotinamide is released while a glycosidic bond between the units is formed. Binding of the PARP-1 and PARP-2 proteins to damaged DNA results in their poly(ADP-ribosylation) and that of the other proteins involved in DNA metabolism [3–6]. This kind of posttranslational modification leads to the activation and assembly of repair systems in the damaged locus of DNA: for example, automodified PARP-1 recruits the base excision repair protein XRCC1 associated with DNA polymerase β and DNA ligase III [7–9]. The crucial role of PARP-1 and PARP-2 has been demonstrated by observations that both parp-1−/− and parp-2−/− mice are more sensitive to ionizing radiation, and parp-1−/− parp-2−/− double mutants die early in development at the onset of gastrulation [10].

The DNA-binding domain (DBD) of PARP-1 is made of specialized zinc fingers, whereas the DBD structure of PARP-2 is unknown and has no sequence homology...
with any identified DNA-binding motif. In contrast, the catalytic domains and the active sites of PARP-1 and PARP-2 in the apo form, as well as in a complex with inhibitors, have extensive structural similarity [11,12]. The NAD+ substrate bound in the active site interacts with Gly863 and Tyr907 residues (the numeration is for PARP-1) similar to inhibitors that mimic nicotinamide moiety. The Gly863 backbone forms two hydrogen bonds with the amide group of nicotinamide, while the Tyr907 side chain stacks with the nicotinamide ring [13]. Several known classes of PARP inhibitors are composed of a carbamoyl group attached to an aromatic ring or a lactam group built in an aromatic ring system [14–19], which makes possible the formation of the abovementioned interactions with the Gly863 and Tyr907 residues. Besides compounds competing with NAD+ for the active site, the minor groove binding ligands may also serve as inhibitors that target the DNA-dependent pathway of PARP-1 regulation [20].

The PARP’s involvement in DNA repair systems makes this enzyme an attractive target for anticancer therapy. Inhibitors of PARP-1 and PARP-2 may potentiate the effects of various DNA-damaging anticancer drugs, such as cisplatin or doxorubicin. When DNA is moderately damaged, PARPs participate in DNA repair so that cancer cells can survive. The combination of a DNA-damaging agent and PARP-1 or PARP-2 inhibitors can help to overcome drug resistance and promote apoptotic cell death, representing a promising strategy for cancer treatment [15, 21–23]. In addition, the use of inhibitors can exploit DNA repair defects in certain cancer cells. For example, the deficiency in homologous recombination in BRCA1/2-deficient cells makes them acutely sensitive to PARP inhibition [24–26]. Several PARP inhibitors tested as anticancer agents have failed to progress through preclinical or clinical trials because of their toxicity and insufficient efficacy [27–29]. In particular, a well-known PARP-1 inhibitor, 3-aminobenzamide, has a limited cell uptake and affects other metabolic processes. A first-in-class PARP-1 inhibitor, olaparib, was approved by the FDA in December 2014 as treatment for patients with advanced ovarian cancer [30]. This compound is a phthalazine derivative with a lactam group which decreases the enzyme’s activity at a nanomolar concentration. Nevertheless, developing effective and non-toxic compounds targeting PARPs and able to suppress the progression of various types of cancers is an important, yet challenging task.

One of the promising classes of PARP inhibitors comprises natural nucleobases and their derivatives which contain a lactam group [31, 32]. However, so far identified compounds (e.g., thymine, hypoxanthine) exert a relatively weak inhibitory effect. In this paper, we report on the results of a computer screening of nucleobase derivatives as PARP inhibitors and in vitro studies of the selected compounds.

EXPERIMENTAL SECTION

Protein model preparation

The initial model of PARP-1 was built on the basis of the 1efy crystallographic structure of the enzyme complex with inhibitor [33] using the AmberTools 1.2 program package (http://ambermd.org). Hydrogen atoms were added to the protein structure, and then it was solvated by a 12 Å-thick layer of TIP3P water. Chloride ions were added to neutralize the system. To perform the energy minimization of the obtained model, the protein molecule was described by the ff99SB force field [34] and the inhibitor molecule was described by GAFF parameters [35] calculated automatically. The energy minimization (2,500 steps of the steepest descent algorithm followed by 2,500 steps of the conjugate gradient algorithm) was performed using the Amber 10 package [36] in order to optimize the positions of hydrogen atoms. During the minimization, the heavy atoms of the protein and inhibitor were kept fixed by positional restraints $k \Delta x^2$, where the force constant k was 2 kcal/(mol Å)2. The inhibitor, water molecules, and chloride ions were removed from the system after the energy minimization to obtain a model for molecular docking.

Molecular docking

The computer library of natural nucleobase derivatives was prepared with the ACD/ChemSketch program [37]. Molecular docking was performed using the Lead Finder 1.1.14 program [38]. The energy grid map surrounding the active site of the PARP-1 model was calculated, and the library was screened using the genetic search algorithm. A series of 20 independent docking runs was performed for each compound, and the probability of a successful docking P_{dock} was defined as the ratio of the number of successful runs meeting the specified structural criterion to the total number of runs; i.e., $P_{\text{dock}} = N_{\text{suc}} / 20$. The structural criterion was the presence of two hydrogen bonds between the lactam group of a docked compound and the Gly863 residue. Compounds with $P_{\text{dock}} \leq 0.8$ were sorted out automatically by a Perl script.

Molecular dynamics simulation

To include the selected potential inhibitor in the simulation, its parameters, except partial charges, were taken from the ff99SB force field. To derive partial charges, the molecular electrostatic potential of the inhibitor was calculated at the HF/6-31G* level of theory with the PC GAMESS/Firefly program [39]. The
fitting of partial atomic charges was done using the RESP method [40]. An equilibration and subsequent 10 ns molecular dynamics (MD) simulation of the PARP-1 in complex with the inhibitor were carried out using AmberTools 1.2 and Amber 10. A model of the complex obtained by molecular docking was solvated by a 12 Å-thick layer of TIP3P water and described by the

Synthesis of compounds

7-Methylguanine, 7-methylxanthine, 7-methylhypoxanthine, and 7-ethylguanine were prepared by alkalization of the corresponding nucleosides, followed by N-glycosidic bond cleavage according to the earlier described procedures [43,44].

7-Methylguanine. 400 MHz 1H NMR (DMSO-d$_6$): δ = 3.82 (s, 3H, Me), 6.03 (brs, 2H, NH$_2$), 7.81 (s, 1H, H-8), 10.66 (brs, 1H, NH).

7-Methylxanthine. 400 MHz 1H NMR (DMSO-d$_6$): δ = 3.81 (s, 3H, Me), 7.85 (s, 1H, H-8), 10.79 (brs, 1H, NH), 11.48 (brs, 1H, NH).

7-Methylhypoxanthine. 400 MHz 1H NMR (CD$_3$OD): δ = 3.94 (s, 3H, Me), 7.80 (s, 1H, H-2), 7.84 (s, 1H, H-8).

7-Ethylguanine. 400 MHz 1H NMR (DMSO-d$_6$): δ = 1.36 (t, 3H, J = 7.2 Hz, CH$_3$), 4.19 (q, 2H, Me, J = 7.2 Hz, CH$_2$), 6.09 (brs, 2H, NH$_2$), 7.90 (s, 1H, H-8), 10.26 (brs, 1H, NH).

Cytotoxicity assay

The cytotoxic activity of 7-methylguanine, cisplatin, doxorubicin, and their combinations was evaluated by the analysis of cell cycle distribution and measurement of the Sub-G1 population by flow cytometry, as well as by measurement of caspase-3-like activity as a marker of the apoptotic pathway. A BRCA1-deficient human breast cancer line HCC1937 (ATCC CRL-2336) was cultured in DMEM supplemented with 10% heat-inactivated fetal bovine serum, penicillin/streptomycin (100 U/ml), and pyruvate (0.11 mg/ml) at 37°C in 20% O$_2$ humidified atmosphere. The cells were maintained in a logarithmic growth phase for all experiments. After 24 h of culturing, the cells were pretreated with 7-methylguanine (150 μM) for 3 h, followed by addition of either cisplatin (70 μM) or doxorubicin (1 μM).

To perform cell cycle analysis, the cells were then harvested after 72 hours, fixed with 70% EtOH (final concentration) for 60 min on ice, rinsed in PBS, and stained in a 500 μl solution containing 50 μg/ml propidium iodide and 25 μg/ml RNase A for 15 min. Data were acquired by a BD FACS CantoII flow cytometer (BD Biosciences) and analyzed using the FACSDiva software. The cleavage of the fluorogenic
peptide substrate Ac-DNLDAMC was measured using a fluorometric assay. Upon treatment with cytotoxic agents, the cells were incubated for 48 hours, then harvested and washed with PBS. After centrifugation, they were re-suspended in PBS at a concentration of 2 × 10^6 cells/100 μl. Then, 25 μl of the suspension was added to a 96-well plate and mixed with a DEVD peptide substrate dissolved in a standard reaction buffer (100 mM HEPES, 10% sucrose, 5 mM DTT, 0.001% NP-40, and 0.1% CHAPS, pH 7.2). Cleavage of the fluorescent peptide substrate was monitored by AMC liberation in a VarioScan Flash multimode detector (Thermo Scientific) using 380 nm excitation and 460 nm emission wavelengths. Measurements were done in at least two independent experiments.

Pharmacokinetics and adverse-effect modeling
Pharmacokinetics and adverse-effect profiling of 7-methylguanine was done with ACD/Percepta [49]. This software in silico predicts ADME properties (absorption, distribution, metabolism, excretion) and toxicity by QSAR models based on an analysis of similar compounds from the experimental data library. In case of 7-methylguanine, among library compounds were acyclovir, caffeine, theobromine, and theophylline.

RESULTS AND DISCUSSION

Virtual screening
A model of PARP-1, the most characterized member of the PARP family, was built on the basis of the crystallographic structure of the catalytic fragment in a complex with the inhibitor (PDB ID 1efy, 2.2 Å resolution). Hydrogen atoms were added taking into account ionization of amino acid side chains, and then their positions were optimized to achieve complementarity to the inhibitor scaffold. A computer library of natural nucleobase derivatives with a lactam structural fragment was prepared comprising nearly a hundred diverse purine and pyrimidine modifications which could be synthesized on a preparative scale. Virtual screening for derivatives able to bind in the active site of the PARP-1 was performed by molecular docking. In order to provide a better sampling of the conformational space, a series of 20 independent docking runs was performed for each compound in the library. Then, we applied the procedure of structural filtration, which allows one to sort out false-positive docking results [47]. As it has been noticed previously, the substrate and the known PARP inhibitors have a common structural feature – their amide (or lactam) group forms two hydrogen bonds with the Gly863 residue. This interaction is apparently crucial for an effective binding in the PARP active site and was used as a criterion for selection of potential inhibitors. Docking poses of compounds meeting the structural criterion were further analyzed for favorable hydrophobic contacts as well as electrostatic interactions in the PARP-1 active site, and the 7-methylguanine molecule ($P_{\text{dock}} = 0.95$, $\Delta G_{\text{calc}} = -6.8$ kcal/mol) was selected as the most promising PARP inhibitor.

MD simulations were further performed to evaluate the geometric characteristics of 7-methylguanine in the PARP-1 active site and examine the stability of the enzyme-inhibitor complex. The formation of two hydrogen bonds between the lactam group of 7-methylguanine and the Gly863 residue was observed along the MD trajectories as well as the pi stacking of purine rings with the side chain of Tyr907 and the hydrophobic interaction of the methyl group at position 7 with the Ala898 side chain (Fig. 1). We also revealed an electrostatic interaction between the amino group of 7-methylguanine at position 2 and the backbone oxygen of Gly263, which appeared to be a non-conventional hydrogen bond. The mean NH...Gly863:O distance was 2.42 Å, and the mean NH...N...NH...Gly863:O angle 137°, whereas the corresponding distance of a regular hydrogen bond is expected to be 1.8–2.1 Å and the angle not less than 150°. Distance and angle characteristics are presented in Table 1.

Interestingly, the structural analogue of 7-methylguanine, namely, 7-methylxanthine, was previously shown to be a moderate inhibitor of PARP-1 [32]. This compound differs from 7-methylguanine by an oxo substituent at position 2 ($P_{\text{dock}} = 0.45$), indicating that its binding has to be less effective. We also docked 7-methylhypoxanthine, analogue with no substituent at position 2, and the predicted binding parameters ($P_{\text{dock}} = 0.85$, $\Delta G_{\text{calc}} = -6.4$ kcal/mol) were less encouraging, as well. Analysis of the modeled poses demonstrated that the amino group at position 2 can substantially increase the effectiveness of the inhibitor's binding in the PARP active site due to the favorable electrostatic interaction with Gly863. The methyl group at position 7 is another substituent responsible for the complementarity of the inhibitor to the PARP-1 active site, as the unmodified xanthine does not show inhibition [32]. However, the calculated parameters of 7-ethylguanine binding ($P_{\text{dock}} = 0.7$, $\Delta G_{\text{calc}} = -6.7$ kcal/mol) indicate that the inhibitory effect cannot be further increased with a growing alkyl chain at this position.

Inhibitory properties of purine derivatives
We synthesized 7-methylguanine, 7-methylxanthine, 7-methylhypoxanthine, and 7-ethylguanine to test their ability to suppress PARP and assess the effect...
of the substituent on the activity of the inhibitor. The inhibitory properties of 7-methylguanine and related compounds were studied using two purified proteins of the PARP family – human PARP-1 and murine PARP-2. Experimental data presented in Table 2 demonstrate that 7-methylguanine, as predicted, is the most effective inhibitor, with IC₅₀ values of 150 and 50 μM for PARP-1 and PARP-2, respectively. Replacement of the 2-oxo group of 7-methylxanthine by the amino group led to a 5- and 3-fold increase in the ability to inhibit PARP-1 and PARP-2. 7-Methylguanine was a more effective inhibitor compared to 7-ethyl-

Table 1. Distance and angle characteristics of the position of 7-methylguanine (7-MG) in the PARP-1 active site determined by MD simulations. Mean values are presented together with the standard deviations.

<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-MG:CO:O ∙∙∙ Gly863:H</td>
<td>7-MG:CO:O ∙∙∙ Gly863:N</td>
</tr>
<tr>
<td>7-MG:NH:H ∙∙∙ Gly863:O</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>7-MG:NH₂:H ∙∙∙ Gly863:O</td>
<td>1.9 ± 0.1</td>
</tr>
<tr>
<td>7-MG:CH₃:C ∙∙∙ Ala898:CB</td>
<td>2.4 ± 0.4</td>
</tr>
<tr>
<td>C(7-MG fused rings) ∙∙∙ C(Tyr907 benzene ring)</td>
<td>4.0 ± 0.3</td>
</tr>
<tr>
<td>Distance between the geometric center of 7-methylguanine fused rings and the center of the Tyr907 benzene ring</td>
<td>3.6 ± 0.2</td>
</tr>
</tbody>
</table>

* Distance between the geometric center of 7-methylguanine fused rings and the center of the Tyr907 benzene ring.
guanine, indicating that the methyl group is an optimal alkyl substituent at this position. It is worth mentioning that all tested purine derivatives were more effective inhibitors of PARP-2 despite the very similar organization of the binding sites of both enzymes. We can assume that the reason for this selectivity is the different inhibitor delivery trajectories to the active centers of the PARP proteins.

Analysis of cytotoxicity

Analysis of cytotoxicity was performed on a human breast cancer line HCC1937, which is thought to be sensitive to the inhibition of PARP due to deficiency in the DNA repair gene BRCA1 [22, 50, 51]. Cell death induced by the conventional anticancer drugs cisplatin and doxorubicin and by 7-methylguanine was estimated by flow cytometry analysis of a Sub-G1 population, which corresponds to an apoptotic cell population with fragmented DNA (Fig. 3). Treatment of the cells with 7-methylguanine itself did not increase the cells’ number in the Sub-G1 phase (it was around 2%), which was comparable to the control. Comparison of cell death level revealed that 7-methylguanine sensitizes HCC1937 to treatment with cisplatin and doxorubicin. With the exposure of cells to a combination of 7-methylguanine and 70 μM cisplatin, the population of cells in the Sub-G1 phase increased from 34% to 43% and addition of 7-methylguanine to 1 μM doxorubicin increased the Sub-G1 population from 32% to 42%. Thus, the level of cell death elevation at addition of 7-methylguanine was very similar in the cases of cisplatin and doxorubicin.

We also analyzed the activation of caspase-3 in HCC1937 cells, which is an important and obligatory event in the apoptotic cell death program. Active caspase-3 cleaves various cellular molecules, which re-

Table 2. Inhibitory effect of 7-methylguanine and related compounds on PARP-1 and PARP-2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC<sub>50</sub> (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARP-1</td>
</tr>
<tr>
<td>7-methylguanine</td>
<td>150</td>
</tr>
<tr>
<td>7-methylxanthine</td>
<td>800</td>
</tr>
<tr>
<td>7-methylhypoxanthine</td>
<td>780</td>
</tr>
<tr>
<td>7-ethyguanine</td>
<td>230</td>
</tr>
</tbody>
</table>
sults in apoptotic morphology of cells. Thus, the degree of caspase-3 activation, measured by cleavage of the specific fluorogenic substrate, corresponds to the level of apoptotic cell death. Figure 4 demonstrates that stimulation of caspase-3 activity was increased by the addition of 7-methylguanine to either cisplatin or doxorubicin by 27–39%, whereas 7-methylguanine alone demonstrated no caspase-3 activation. These data are in agreement with cell death induction observed by flow cytometry.

Pharmacokinetics and adverse-effect profiling

Finally, we evaluated the pharmacokinetic properties and adverse-effect profile of 7-methylguanine using QSAR models based on literature data on its structural analogues (acyclovir, caffeine, theobromine, theophylline, etc.). In particular, human intestinal permeability was estimated to be very high, and the oral bioavailability was predicted to be optimal (83%). The calculated plasma protein bound fraction of 7-methylguanine was 17%, which should not considerably affect its efficiency. It is unlikely that 7-methylguanine binds to estrogen receptor alpha (no risk of reproductive toxicity), hERG potassium ion channel (no risk of cardiotoxicity), P-glycoprotein efflux transporter, and cytochrome P450 enzymes (CYP3A4, CYP2D6, CYP2C9, CYP2C19, CYP1A2). Thus, the predicted properties provide evidence of the safety and efficacy of 7-methylguanine for humans.

CONCLUSIONS

Despite the ability of DNA-damaging drugs to kill cancer cells, resistance to chemotherapy and drug toxicity remain serious problems. DNA repair systems involving PARP-1 and PARP-2 play an important role in the normal development of the organism, but in anticancer treatment with DNA-damaging agents these proteins may decrease the therapeutic effect. A nucleic acid metabolite 7-methylguanine was identified in silico as a novel inhibitor of PARP catalytic activity and studied experimentally. Two structural features of purine derivatives were shown to be important for efficient binding - the amino group at position 2 and the methyl group at position 7. At PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic but able to sensitize BRCA1-deficient breast cancer cells to commonly used chemotherapeutic agents (cisplatin and doxorubicin). 7-Methylguanine is a nucleic acid metabolite observed in human serum and excreted in urine [52]. Despite the fact that 7-methylguanine is a weaker inhibitor than olaparib and some other PARP inhibitors, we believe that this natural compound possesses better pharmacokinetics and an adverse-effect profile compared to synthetic inhibitors and may be considered as a promising new constituent of anticancer therapy.

This work was supported by the Russian Ministry of Education and Science (State agreement № 14.604.21.0018, ID RFMEFI60414X0018). The chemical synthesis of purines was supported by the Russian Foundation for Basic Research (grant 14-04-00835_a).

REFERENCES
