In the Front Line of World Science

Cover Page

Cite item

Abstract

The creation and organization of the Institute of Molecular Biology (in its first six years it was called the Institute of Radiation and Physicochemical Biology, Academy of Sciences of the USSR) is forever connected with the name of Vladimir Alexandrovich Engelhardt, one of the most outstanding biochemists and molecular biologists of the 20th century. Vladimir Alexandrovich won broad fame and international acclaim as far back as the 1930s for discovering oxidative (respiratory) phosphorylation with the participation of ATP. In the beginning of the 1940s, Vladimir Alexandrovich earned fame again, when he and his wife Milicia Nikolaevna Lyubimova discovered the fermentation activity of myosin protein, which allowed him to suggest a theory about the combination of the structure and functions of biological compounds on the level of individual molecules. This scientific body of work became part of a goldmine of science, while Vladimir Alexandrovich began to be justifiably referred to as one of the founders of molecular biology in our country.

Full Text

In t h e m i d d l e t h e 1 9 5 0 s , Vladimir Alexandrovich progressed up the career ladder and became an AcademicianSecretary of the Biological Research Branch, Academy of Sciences of the USSR. Needless to say, he had to immediately join in the reconstruction and consolidation of Russian experimental biology and genetics, which were almost completely in ruins. The most important stage in that process was, in his opinion, the creation of the first specialized Russian molecular biological institute. Vladimir Alexandrovich managed to build that institute with the unwavering support of A.N. Nesmeyanov, president of the Academy of Sciences of the USSR, and a group of outstanding physicists such as I.V. Kurchatov, P.L. Kapitsa, and I.E. Tamma. The Resolution on the Creation of a New Molecular Biological Institute was adopted in April of 1957 by the Presidium of the Academy of Sciences of the USSR, but in fact the institute was launched two years later.
×

About the authors

A V Zelenin

V L Karpov

References

  1. Grivennikov S.I., Tumanov A.V., Liepinsh D.J., Kruglov A.A., Marakusha B.I., Shakhov A.N., Murakami T., Drutskaya M.S., Forster I., Clausen B.E., Tessarollo L., Ryffel B., Kuprash D.V., Nedospasov S.A. 2005. Distinct and non-redundant in vivo functions of TN F produced by T cells and macrophages/ neutrophils: protective and deleterious effects. Immunity. 22. 93-104.
  2. Liepinsh D.J., Grivennikov S.I., Lagarkova M.A., Drutskaya M.S., Klarmann K.D., Lockett S.J., McAuliffe M., Tessarollo L., Keller J.R., Kuprash D.V., Nedospasov S.A. 2006. Novel lymphotoxin alpha knockout mice with unperturbed TN F expression: reassessing LTalpha biological functions. Mol Cell Biol. 26. 4214-4225.
  3. Cui C.-Y., Hashimoto T., Grivennikov S.I., Piao Y., Nedospasov S.A., and Schlessinger D. 2006. Ectodysplasin activates the lymphotoxin-beta pathway for hair follicle differentiation. Proc Natl Acad Sci USA. 103. 9142-9147.
  4. Welniak L.A., Kuprash D.V., Tumanov A.V., Panoskaltsis-Mortari A., Blazar B.R., Sun K., Nedospasov S.A., and Murphy W.J. 2006. Peyer’s patches are not required for acute lethal graft-versus-host disease after myeloablative conditioning and murine allogeneic bone marrow transplantation. Blood. 107. 410-412.
  5. Tumanov A.V., Koroleva E.P., Christiansen P.A., Khan M.A., Ruddy M.J., Burnette B., Papa S., Franzoso G., Nedospasov S.A., Fu Y.X., Anders R.A. 2009. T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology. 136. 694-704.
  6. Sablina A.A., Budanov A.V., Ilyinskaya G.V., Agapova L.S., Kravchenko J.E., Chumakov P.M. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Medicine. 11. 1306-1313.
  7. Budanov A.V., Sablina A.A., Feinstein E., Koonin E.V., Chumakov P.M. 2004. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 304. 596-600.
  8. Kravchenko J.E., Ilyinskaya G.V., Komarov P.G., Agapova L.S., Kochetkov D.V., Strom E., Frolova E.I., Kovriga I., Gudkov A.V., Feinstein E., Chumakov P.M. 2008. Small molecule RETR A suppresses mutant p53-bearing cancer cells through a p73 dependent salvage pathway. Proc. Natl. Acad. Sci. USA. 105. 6302-6307.
  9. Kravchenko J.E., Rogozin I.B., Koonin E.V., Chumakov P.M. 2005. Transcription of mammalian mRN As by a novel nuclear RN A polymerase of mitochondrial origin. Nature. 436. 735-739.
  10. Shidlovskii Y.V., Krasnov A.N., Nikolenko J.V., Lebedeva L.A., Kopantseva M., Ermolaeva M.A., Ilyin Yu.V., Nabirochkina E.N., Georgiev P.G. and Georgieva S.G. 2005. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO Journal. 24. 97–107.
  11. Kurshakova M., Krasnov A., Kopytova D., Shidlovsky Y., Nikolenko J., Nabirochkina E., Splender D., Schultz P., Tora L., Georgieva S. 2007. SAGA and a novel Drosophila export complex anchor efficient transcription and mRN A export to NPC. EMBO Journal.26. 4956-4965.
  12. Krasnov A., Kurshakova M., Ramensky V., Mardanov P., Nabirochkina E., Georgieva S. 2005. A retrocopy of a gene can functionally displace the source gene in evolution. Nucleic Acids Res. 33. 6654-6661.
  13. Kopytova D., Krasnov A., Kopantceva M., Nabirochkina E., Nikolenko J., Kurshakova M., Lebedeva L., Korochkin L., Tora L., Georgiev P., Georgieva S. 2006. The two isoforms of Drosophila TR F2 are essential for embryonic development, premeiotic chromatin condensation and proper differentiation of germ cells of both sexes. Mol. Cell. Biol. 26. 7492-7505.
  14. Alkalaeva E.Z., Pisarev A.V., Frolova L.Yu., Kisselev L.L., Pestova T.V. 2006. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell. 125. 1125-1136.
  15. Mitkevich V.A., Kononenko A.V., Petrushanko I.Yu., Yanvarev D.V., Makarov A.A., Kisselev L.L. 2006. Termination of translation in eukaryotes is mediated by the quaternary eRF1•eRF3•GTP•Mg2- complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct. Nucleic Acids Res. 34. 3947-3954.
  16. Hauryliuk V., Mitkevich V.A., Eliseeva N.A., Petrushanko I.Yu, Ehrenberg M., Makarov A.A. 2008. The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form. Proc. Natl. Acad. Sci. USA. 105. 15678-15683.
  17. Pyatkov K.I., Arkhipova I.R., Malkova N.V., Finnegan D.J., Evgen’ev M.B. 2004. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc. Natl. Acad. Sci. USA. 101. 14719-14724.
  18. Ramensky V.E, Nurtdinov R.N, Neverov A.D, Mironov A.A, Gelfand M.S. 2008. Positive selection in alternatively spliced exons of human genes. Am J Hum Genet. 83. 94-98.
  19. Sunyaev S., Kondrashov F.A., Bork P., Ramensky V. 2003. Impact of selection, mutation rate and genetic drift on human genetic variation. Hum Mol Genet. 12. 3325-3330.
  20. Mikhailovich V., Gryadunov D., Kolchinsky A., Makarov A.A., and Zasedatelev A. 2008. DNA microarrays in the clinic: infectious diseases. Bioessays. 30. 673-682.
  21. Rubina A.Yu., Kolchinsky A., Makarov A.A., Zasedatelev A.S.. 2008. Why 3D- GelBased Microarrays in Proteomics. Proteomics. 8. 817-831.
  22. Gryadunov D.A., Mikhailovich V.M., Nicot F., Dubois M., Zasedatelev A.S., Izopet J. Method for identifying the genotype and subtype of hepatitis C virus on a biological microchip. International Application Number PCT /RU 2007/000438.
  23. Darii E., Lebeau D., Papin N., Rubina A.Y., Stomakhin A., Tost J., Sauer S., Savvateeva E., Dementieva E., Zasedatelev A., Makarov A.A. and Gut I.G. Quantification of target proteins using hydrogel antibody arrays and MALDI time-of-flight mass spectrometry (A2M2S). 2009. New Biotechnology. (in press).
  24. Khodakov D.A., Zakharova N.V., Gryadunov D.A., Filatov F.P., Zasedatelev A.S, Mikhailovich V.M. 2008. An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques. 44. 241-248.
  25. Karpenko I.L., Jasko M.V., Andropova V.L., Ivanov A.V., Kukhanova M.K., Galegov G.A., Skoblov Y.S. 2003. Synthesis and antiherpetic activity of acyclovir phsphonates. Nucleosides Nucleotides Nucleic Acids. 22. 319-328.
  26. Jubilee brochure devoted to semicentenary of the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Zelenin A.V., Karpov V.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies