Chemical and Functional Aspects of Posttranslational Modification of Proteins

Cover Page

Abstract


This paper reviews the chemical and functional aspects of the posttranslational modifications of proteins, which are achieved by the addition of various groups to the side chain of the amino acid residue backbone of proteins. It describes the main prosthetic groups and the interaction of these groups and the apoenzyme in the process of catalysis, using pyridoxal catalysis as an example. Much attention is paid to the role of posttranslational modification of proteins in the regulation of biochemical processes in live organisms, and especially to the role of protein kinases and their respective phosphotases. Methylation and acetylation reactions and their role in the “histone code,” which regulates genome expression on the transcription level, are also reviewed. This paper also describes the modification of proteins by large hydrophobic residues and their role in the function of membrane-associated proteins. Much attention is paid to the glycosylation of proteins, which leads to the formation of glycoproteins. We also describe the main non-enzymatic protein modifications such as glycation, homocysteination, and desamidation of amide residues in dibasic acids.

Modification of proteins by addition of prosthetic gro ups In some cases, the last step in the biosynthesis of a functional protein is the covalent binding of a prosthetic group, which forms part of the active site [1, 2]. Table 1 shows the structural formulas of side chain modification products after the covalent binding of certain cofactors to proteins, as well as the types of reactions in which the corresponding prosthetic groups take part. Most of the listed prosthetic groups remain covalently bound to the apoenzyme through the whole catalytic process. Introd uction Template biosynthesis of polypeptide chains on ribosomes most often does not immediately produce a fully functional protein. The newly formed polypeptide chain must undergo certain chemical modifications outside the ribosome. These modifications are most often driven by enzymes and take place after all the information supplied by the template RN A (mRN A) has been read, that is after mRN A translation: thus, these additional processes are called posttranslational modifications. Posttranslational protein modification processes can be divided into two main groups. The first group unites proteolytic processes, which are mainly cleavages of certain peptide bonds, resulting in the removal of some of the formed polypeptide fragments.

D G Knorre

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

N V Kudryashova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

T S Godovikova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Email: godov@niboch.nsc.ru

  1. Walsh C.T., Garneau-Tsodikova S., Gatto G.J. Angew. Chem. Int. Ed. 2005 V. 44. № 45. P. 7342–7372.
  2. Lehninger A. Principles of Biochemistry. New York: W.H. Freeman and Company. 2008.
  3. Karpeysky M.Y., Ivanov V.I. Nature. 1966. V. 210. № 30. P. 493–496.
  4. Lowe J.N., Ingraham L.L. An Introduction to Biochemical Reactions Mechanisms. Chap.Foundation of Molecular Biology Series. New Jersey: Prentice-Hall, Englewood Cliffs. 1974.
  5. Hubbard S.R.. Handbook of Cell Signaling. 2009. ch. 58. P. 413–418.
  6. Hubbard S.R., Miller W.T. Curr. Opin. Cell Biol. 2007. V. 19. № 2. P. 117–123.
  7. Ubersax J.A., Ferrell J.E.Jr. Nat. Rev. Mol. Cell. Biol. 2007. V. 8. № 7, P. 530–541.
  8. Beene D.L., Scott J.D. Curr. Opin. Cell. Biol. 2007. V. 19. № 2. P. 192–198.
  9. Alemany R., Perona J,S., Sanchez-Dominguez J.M., Montero E., Canizares J., Escriba P.V. Biochim. Biophys. Acta. 2007. V. 1768. № 4. P. 964–975.
  10. Saltiel A.R., Pessin J.E. Trends Cell Biol. 2002. V. 12. № 2. P. 65–71.
  11. Maures T.J., Kurzer J.H., Carter-Su C. Trends Endocrinol. Metab. 2007. V. 18. № 1. P. 38–45.
  12. Patwardhan P., Miller W.T. Cell. Signal. 2007. V. 19. № 11. P. 2218–2226.
  13. Lieser S.A., Aubol B.E., Wong L., Jennings P.A., Adams J.A. Biochim. Biophys. Acta. 2005. V. 1754. № 1–2. P. 191–199.
  14. Bublil E.M., Yarden Y. Curr. Opin. Cell Biol. 2007. V. 19. № 2. P. 124–134.
  15. Dorsam R.T., Gutkind J.S. Nat. Rev. Cancer. 2007. V. 7. № 2. P. 79–94.
  16. Viallard J.F., Lacombe F., Belloc F., Pellegrin J.L., Reiffers J. Cancer Radiother. 2001. V. 5. № 2. P. 109–129.
  17. Syeed A.S., Vohra H., Cupta A., Ganguly N. Curr. Science. 2001. V. 80. № 3. P. 349–360.
  18. Nakagami H., Pitzschke A., Hirt H. Trends Plant Sci. 2005. V. 10. № 7. P. 339–346.
  19. Chau B.N., Wang J.Y.J. Nat. Rev. Cancer. 2003. V. 3. P. 130–138.
  20. Johnson L.N., Lewis R.J. Chem. Rev. 2001. V. 101.№ 8. P. 2209–2242.
  21. Birnbaumer L. Biochim. Biophys. Acta. 2007. V. 1768. № 4. P. 756–771.
  22. Cooper D.M.F., Crossthwaite A.J. Trends Pharmacol. Sci. 2006. V. 27. № 8. P. 26–431.
  23. Willoughby D., Cooper D.M.F. Physiol. Rev. 2007. V. 87. P. 965–1010.
  24. Deng X., Mercer P.F., Scotton C.J., Gilchrist A., Chambers R.C. Mol. Biol. Cell. 2008. V. 19. № 6. P. 2520–2533.
  25. Xu Y. Cell Death Differ. 2003. V. 10. № 4. P. 400–403.
  26. Lindner H.H. Electrophoresis. 2008. V. 29. № 12. P. 2516–2532.
  27. Sarg B., Chwatal S., Talasz H., Lindner H.H. J. Biol. Chem. 2009. V. 284. № 6. P. 3610–3618.
  28. Dahmus M.E. J. Biol. Chem. 1996. V. 271. № 32. P. 19009–19012.
  29. Lee T.I., Young R.A. Annu. Rev. Genet. 2000. 34. P. 77–137
  30. Bottomley M.J. EMBO Rep. 2004. V. 5. № 5. P. 464–469.
  31. Owen D.J., Ornaghi P., Yang J.-C., Lowe N., Evans P.R., Ballario P., Neuhaus D., Filetici P., Travers A.A. EMBO J. 2000. V. 19.№ 22. P. 6141–6149.
  32. Mukherjee S., Hao Y.-H., Orth K. Trends Biochem. Sci. 2007. V. 32. № 5. P. 210–216.
  33. Margueron R., Trojer P., Reinberg D. Curr. Opin. Gen. Develop. 2005. V. 15. № 2. P. 163–176.
  34. Shen S., Casaccia-Bonnefil P. J. Mol. Neurosci. 2008. V. 35. № 1. P. 13–22.
  35. Iizuka M., Smith M.M. Curr. Opin. Gen. Develop. 2003. V. 13. № 2. P. 154–160.
  36. Couture J.F., Trievel R.C. Curr. Opin. Struct. Biol. 2006. V. 16. № 6. P. 753–760.
  37. Cole P.A. Nat. Chem. Biol. 2008. V. 4. № 10. P. 590–597.
  38. Strahl B.D., Allis C.D. Nature. 2004. V. 403. № 6765. P. 41–45.
  39. Khorasanizadeh S. Cell. 2004. V. 116. № 2. P. 259–272.
  40. Feng L., Lin T., Uranishi H., Gu W., Xu Y. Mol. Cell. Biol. 2005. V. 25. № 13. P. 5389–5395.
  41. Desmeules P., Penney S.-E., Desbat B., Salesse C. Biophys. J. 2007. V. 93. № 6. P. 2069–2082.
  42. Farazi T.A., Waksman G., Gordon J.I. J. Biol. Chem. 2001. V. 276. № 43. P. 39501–39504.
  43. Smotrys J.E., Linder M.E. Annu. Rev. Biochem. 2004. V. 73. P. 559–587.
  44. Tanimura N., Saitoh S., Kawano S., Kosugi A., Miyake K. Biochem. Biophys. Res. Commun. 2006. V. 341. № 4. P. 1177–1183.
  45. Resh M.D. Biochim. Biophys. Acta. 1999. V. 1451. № 1. P. 1–16.
  46. Adams J.A. Chem. Rev. 2001. V. 101. № 8. P. 2271–2290.
  47. Pechlivanis M., Kuhlmann J. Biochim. Biophys. Acta. 2006. V. 1764. № 12. P. 1914–1931.
  48. Selvakumar P., Lakshmikuttyamma a., Shrivastav a., Das S.B., Dimmock J.R., Sharma R.K. Progr. Lipid Res. 2007. V. 46. № 1. P. 1–36.
  49. Dietrich L.E.P., Ungermann C. EMBO Rep. 2004. V. 5. № 11. P. 1053–1057.
  50. Drisdel R.C., Alexander J.C., Sayeed A., Green W.N. Methods. 2006. V. 40. № 2. P. 127–134.
  51. Hemsley P. A., Grierson C.S. Trends Plant Sci. 2008. V.13.№ 6. P. 295–302.
  52. Pickart c.M. Annu. Rev. Biochem. 2001. V. 70. P. 503–533.
  53. Glickman M.H., Ciechanover A. Physiol. Rev. 2002. V. 82. № 2. P. 373–428.
  54. Pickart C.M. Cell. 2004. V. 116. № 2. P. 181–190.
  55. Finley D., Ciechanover A., Varshavsky A. Cell. 2004. V. 116. 2 Suppl. P. S29–S32.
  56. Capili A.D., Lima C.D. Curr. Opin. Struct. Biol. 2007. V. 17. № 6. P. 726–735.
  57. Pickart C. M., Eddins M. J. Biochim. Biophys. Acta. 2004. V. 1695. № 1–3. P. 55–72.
  58. Herrmann J., Lerman L.O., Lerman A. Circ. Res. 2007. V. 100. № 9. P. 1276–1291.
  59. Schwartz D.C., Hochstrasser M. Trends Biochem. Sci. 2003. V. 28. № 6. P. 321–328.
  60. Li W., Ye Y. Cell. Mol. Life Sci. 2008. V. 65. № 15. P. 2397–2406.
  61. Pickart C.M., Fushman D. Curr. Opin. Chem. Biol. 2004. V. 8. № 6. P. 610–616.
  62. Aguilar R.C., Wendland B. Curr. Opin. Cell Biol. 2003. V. 15. № 2. P. 184–190.
  63. Pickart C.M. Mol. Cell. 2001. V. 8. № 3. P. 499–504.
  64. Gill G. Curr. Opin. Genet. Dev. 2005. V. 15. № 5. P. 536–541.
  65. Smith B.C., Denu J.M. Biochim. Biophys. Acta. 2009. V. 1789.№ 1. P. 45–57.
  66. Scoumanne A., Chen X. Histol. Histopathol. 2008. V. 23. № 9. P. 1143–1149.
  67. Marmorstein R., Trievel R.C. Biochim. Biophys. Acta. 2009. V. 1789. № 1. P. 58–68.
  68. Berger S.L. Curr. Opin. Genet. Dev. 2002. V. 12. № 2. P. 142–148.
  69. Loyola A., Almouzni G. Trends Biochem. Sci. 2007. V. 32. № 9. P. 425–433.
  70. Lachner M., Jenuwein T. Curr. Opin. Cell Biol. 2002. V. 14. № 3. P. 286–298.
  71. de La Roche Saint-Andre C. Biochimie. 2005. V. 87. № 7. P. 603–612.
  72. Kiefer J.C. Develop. Dynamics. 2007. V. 236. № 4. P. 1144–1156.
  73. Lane K.T., Beese L.S. J. Lipid Res. 2006. V. 47. № 4. P. 681–699.
  74. Leung K.F., Baron R., Seabra M.C. J. Lipid Res. 2006. V. 47. № 3. P. 467–475.
  75. Pylypenko O., Rak A., Durek T., Kushnir S., Dursina B.E., Thomae N.H., Constantinescu A.T., Brunsveld L., Watzke A., Waldmann H., Goody R.S., Alexandrov K. EMBO J. 2006. V. 25. № 1. P. 13–23.
  76. Lu J.-Y., Hofmann S.L. J. Lipid Res. 2006. V. 47.№ 7. P. 1352–1357.
  77. Kinsella B.T., Erdman R.A., Maltese W.A. Proc. Natl. Acad. Sci. USA. 1991. V. 88. № 20. p. 8934–8938.
  78. Maltese W.A. FASEB J. 1990. V. 4. № 15. P. 3319–3328.
  79. Basso A.D., Kirschmeier P., Bishop W.R. J. Lipid Res. 2006. V. 47. № 1. P. 15–31.
  80. Magee T., Seabra M.C. Curr. Opin. Cell Biol. 2005. V. 17. № 2. P. 190–196.
  81. Lan F., Nottke A.C., Shi Y. Curr. Opin. Cell Biol. 2008. V. 20. № 3. P. 316–325.
  82. Shi Y., Lan F., Matson C., Mulligan P., Whetstine J.R., Cole P.A., Casero R.A. Cell. 2004. V. 119. № 7. P. 941–953.
  83. Tsukada Y., Fang J., Erdjument-Bromage H., Warren M. E., Borchers C.H., Tempst P., Zhang Y. Nature. 2006. V. 439. № 7078. P. 811–816.
  84. Baron R.A., Seabra M.C. Biochem. J. 2008. V. 415. № 1. P. 67–75.
  85. Roberts P.J., Mitin N., Keller P.J., Chenette E.J., Madigan J.P., Currin R.O., Cox A.D., Wilson O., Kirschmeier P., Der C.J. J. Biol. Chem. 2008. V. 283. № 37. P. 25150–25163.
  86. Wright L.P., Philips M.R. J. Lipid Res. 2006. V. 47. № 5. P. 883–891.
  87. Leung K.F., Baron R., Ali B.R., Magee A.I., Seabra M.C. J. Biol. Chem. 2007. V. 282. № 2. P. 1487–1497.
  88. Lehle L., Strahl S., Tanner W. Angew. Chem. Int. Ed. 2006. V. 45. № 41. P. 6802–6818.
  89. Lowe J.B., Marth J.D. Annu. Rev. Biochem. 2003. V. 72. P. 643–691.
  90. Parodi A.J. Annu. Rev. Biochem. 2000. V. 69. P. 69–93.
  91. Parodi A.J. Biochem. J. 2000, V. 348. Pt. 1. P. 1–13.
  92. Caramelo J.J., Parodi A. J. Semin. Cell. Dev. Biol. 2007. V. 18. № 6. P. 732–742.
  93. Deprez P., Gautschi M., Helenius A. Mol. Cell. 2005. V. 19. № 2. P. 183–195.
  94. Dejgaard S., Nicolay J., Taheri M., Thomas D.Y., Bergeron J.J.D. Curr. Issues Mol. Biol. 2004. V. 6. № 1. P. 29–42.
  95. Roth J. Chem. Rev. 2002. V. 102. № 2. P. 285–303.
  96. Lis H., Sharon N. Eur. J. Biochem. 1993. V. 218. № 1. P. 1–27.
  97. Zachara N.E., Hart G.W. Biochim. Biophys. Acta. 2006. V. 1761. № 5–6. P. 599–617.
  98. Wells L., Whelan S.A., Hart G.W. Biochem. Biophys. Res. Commun. 2003. V. 302. № 3. P. 435–441.
  99. Goto M. Biosci. Biotechnol. Biochem. 2007. V. 71. № 6. P. 1415–1427.
  100. Gerken T.A., Gilmore M., Zhang J. J. Biol. Chem. 2002. V. 277. № 10. P. 7736–7751.
  101. Ohtsubo K., Marth J.D. Cell. 2006. V. 126. № 5. P. 855–867.
  102. Haines N., Irvine K.D. Nat. Rev. Mol. Cell. Biol. 2003. V. 4. № 10. P. 786–797.
  103. Bojarova P., Williams S.J. Curr. Opin. Chem. Biol. 2008. V. 12. № 5. P. 573–581.
  104. Chapman E., Best M.D., Hanson S.R., Wong C.-H. Angew. Chem. Int. Ed. 2004. V. 43. № 27. P. 3526–3548.
  105. Ghosh D. Cell. Mol. Life Sci. 2007. V. 64. № 15. P. 2013–2022.
  106. Hanson S.R., Best M.D., Wong C.-H. Angew. Chem. Int. Ed. 2004. V. 43. № 43. P. 5736–5763.
  107. Koch-Nolte F., Adriouch S., Bannas P., Krebs C., Scheuplein F., Seman M., Haag F. Ann. Med. 2006. V. 38. № 3. P. 188–199.
  108. Sakurai J., Nagahama M., Hisatsune J., Katunuma N., Tsuge H. Advan. Enzyme Regul. 2003. V. 43. P. 361–377.
  109. Tsuge H., Nagahama M., Nishimura H., Hisatsune J., Sakaguchi Y., Itogawa Y., Katunuma N., Sakurai J. J. Mol. Biol. 2003. V. 325. № 3. P. 471–483.
  110. Holbourn K.P., Sutton J.M., Evans H.E., Shone C.C., Acharya K.R. Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 15. P. 5357–5362.
  111. Krueger K.M., Barbieri J.T. Clin. Microbiol. Rev. 1995. V. 8. № 1. P. 34-47.
  112. Kaslow H.R., Lim L.K., Moss J., Lesikar D.D. Biochemistry. 1987. V. 26. № 1. P.123–127.
  113. Spangler B.D. Microbiol. Rev. 1992. V. 56. № 4. P. 622–647.
  114. Collier R.J. Bacteriol. Rev. 1975. V. 39. № 1. P. 54–85.
  115. Jorgensen R., Merrill A.R., Andersen G.R. Biochem. Soc. Trans. 2006. V. 34. Pt. 1. P. 1–6.
  116. Jorgensen R., Merrill A.R., Yates S.P., Marquez V.E., Schwan A 116..L., Boesen T., Andersen G.R. Nature. 2005. V. 436. № 7053. P. 979–984.
  117. Yates S.P., Jorgensen R., Andersen G.R., Merrill A.R. Trends Biochem. Sci. 2006. V. 31. № 2. P. 123–133.
  118. Lindahl T. Nature. 1993. V. 362. № 6422. P. 709–715.
  119. Sharer O.D. Angew. Chem. Int. Ed. 2003. V. 42. P. 2946–2974.
  120. Bernstein C., Bernstein H., Payne C.M., Garewal H. Mutat. Res. 2002. V. 511. № 2. P. 145–178.
  121. Althaus F.R., Kleczowska H.E., Malanga M., Muntener C.R., Pleschke J.M., Ebner M., Auer B. Mol. Cell. Biochem. 1999. V. 193. № 1–2. P. 5–11.
  122. Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. Microbiol. Mol. Biol. Rev. 2006. V. 70. № 3. P. 789-829.
  123. D’Amours D., Desnoyers S., D’Silva I., Poirier G.G. Biochem J. 1999. V. 342. Pt. 2. P. 249–268.
  124. Nguewa P.A., Fuertes M.A., Valladares B., Alonso C., Perez J.M. Proc. Biophys. Mol. Biol. 2005 V. 88 № 1 P. 143–172.
  125. Schreiber V., Dantzer F., Ame J.C., de Mucia G. Natl. Rev. Mol. Cell. Biol. 2006. V. 7. № 7. P. 517–528.
  126. Fan J., Wilson D.M. Free Radic. Biol. Med. 2005. V. 38. № 9. P. 1121–1138.
  127. Sallmann F.R., Vodenicharov M.D., Wang Z.Q., Poirier G.G. J. Biol. Chem. 2000. V. 275. № 20, P. 15504–15511.
  128. Ame J.C., Spenlehauer C., de Murcia G. BioEssays. 2004. V. 26. № 8. P. 882–893.
  129. Kim M.Y., Zhang T., Kraus W.L. Genes Dev. 2005 V. 19. № 17. P. 1951–1967.
  130. Yamanaka H., Penning C.A., Willis E.H., Wasson D.B., Carson D.A. J. Biol. Chem. 1988. V. 263. № 8. P. 3879–3883.
  131. Ikejima M., Marsischky G., Gill D.M. J. Biol. Chem. 1987. V. 262. № 36. P. 17641–17650.
  132. Kawaichi M., Ueda K., Hayaishi O. J. Biol. Chem. 1980. V. 255. № 3. P. 816–819.
  133. Ueda K., Kawaichi M., Okayama H., Hayaishi O. J. Biol. Chem. 1979. V. 254. № 3. P. 679–687.
  134. Alvarez-Conzalez R. J. Biol. Chem. 1988. V. 263. № 33. P. 17690–17696.
  135. Rolli V., O’Farrell M., Menissier de Murcia J., de Murcia G. Biochemistry. 1997. V. 36. № 40. P. 12147–12154.
  136. Miwa M., Saikawa N., Yamaizumi Z., Nishimura S., Sugimura T. Proc. Natl. Acad. Sci. U.S.A. 1979. V. 76. № 2. P. 595–599.
  137. Mendoza-Alvarez H., Alvarez-Conzalez R. Biochemistry. 1987. V. 26. № 11. P. 3218–3224.
  138. Mendoza-Alvarez H., Alvarez-Conzalez R. J. Biol. Chem. 1993. V. 268. № 30. P. 22575–22580.
  139. Zahradka P., Ebisuzaki K. J. Biol. Chem. 1984. V. 259. № 2. P. 986–995.
  140. Lindahl T. Mutat. Res. 2000. V. 462. № 2–3. P. 129–135.
  141. Tanuma S., Yagi T., Johnson G.S. Arch. Biochem. Biophys. 1985. V. 237. № 1. P. 38–42.
  142. Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. Microbiol. Mol. Biol. Rev. 2006. V. 70. № 3. P. 789–829.
  143. Ying J., Clavreul N., Sethuraman M., Adachi T., Cohen R.A. Free Radic. Biol. Med. 2007. V. 43. № 8. P. 1099–1108.
  144. Giles N.M., Giles G.I., Jacob C. Biochem. Biophys. Res. Commun. 2003. V. 300. № 1. P. 1–4.
  145. Jones D.P., Go Y.-M., Anderson C.L., Ziegler T.R., Kinkade J.M., Kirlin W.G. FASEB J. 2004. V. 18.№ 11. P. 1246–1248.
  146. Go Y.-M., Jones D.P. Biochim. Biophys. Acta. 2008. V. 1780. № 11. P. 1273–1290.
  147. Jacob C., Giles G.I., Giles N.M., Sies H. Angew. Chem. Int. Ed. 2003. V. 42. № 39. P. 4742–4758.
  148. Giles N.M., Watts A.B., Giles G.I., Fry F.H., Littlechild J.A., Jacob C. Chem. Biol. 2003. V. 10. № 8. P. 677–693.
  149. Kemp M., Go Y.-M., Jones D.P. Free Radic. Biol. Med. 2008. V. 44. № 6. P. 921–937.
  150. Iwakiri Y., Satoh A., Chatterjee S., Toomre D.K., Chalouni C.M., Fulton D., Groszmann R.J., Shah V.H., Sessa W.C. Proc. Natl. Acad. Sci. USA. 2006. V. 103. № 52. P. 19777–19782.
  151. Yang Y., Loscalzo J. Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 1. P. 117–122.
  152. Doctor A., Platt R., Sheram M.L., Eischeid A., McMahon T., Maxey T., Doherty J., Axelrod M., Kline J., Gurka M., Gow A., Gaston B. Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 16. P. 5709–5714.
  153. Torta F., Usuelli V., Malgaroli A., Bachi A. Proteomics. 2008. V. 8. № 21. P. 4484–4494.
  154. Stamler J.S., Lamas S., Fang F.C. Cell. 2001. V. 106. № 6. P. 675–683.143.
  155. Myllyharju J., Kivirikko K.I. Trends Gen. 2004. V. 20. № 1. P. 33–43.
  156. Koivunen P., Hirsila M. , Gunzler V., Kivirikko K.I., Myllyharju J. J. Biol. Chem. 2004. V. 279. № 11. p. 9899–9904.
  157. Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Science. 2002. V. 295,.№ 5556 P. 858–861.
  158. Clifton I.J., Hsueh L.C., Baldwin J.E., Harlos K., Schofield C.J. Eur. J. Biochem. 2001 V. 268. № 24. P. 6625–6636.
  159. Bruick R.K., McKnight S.L. Science. 2001. V. 294. № 5545. P. 1337–1340.
  160. Ratcliffe P.J. Blood. Purif. 2002. V. 20. № 5. P. 445–450.
  161. Marxsen J.H., Stengel P., Doege K., Heikkinen P., Jokilehto T., Wagner T., Jelkmann W., Jaakkola P., Metzen E. Biochem. J. 2004. V. 381. Pt. 3. P. 761–767.
  162. Huang L.E., Gu J., Schau M., Bunn F. Proc. Natl. Acad. Sci. USA. 1998. V. 95. № 14. p. 7987–7992.
  163. Kallio P.J., Wilson W.J., O’Brien S., Makino Y., Poellinger L. J. Biol. Chem. 1999. V. 274. № 10. p. 6519–6525.
  164. Furie B., Bouchard B.A., Furie B.C. Blood. 1999. V. 93. № 6. P. 1798–1808.
  165. Bandyopadhyay P.K. Vitam. Horm. 2008. V. 78. P. 157–184.
  166. Stafford D.W. J. Thromb. Haemost. 2005. V. 3. № 8. P. 1873–1878.
  167. Wajih N., Hutson S.M., Wallin R. J. Biol. Chem. 2007. V. 282. № 4. P. 2626–2635.
  168. Ulrich P., Cerami A. Recent Prog. Horm. Res. 2001. V. 56. P. 1–21.
  169. Acosta J., Hettinga J., Fluckiger R., Krumrei N., Goldfine A., Angarita L., Halperin J. Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 10. P. 5450–5455.
  170. Thornalley P.J., Langborg A., Minhas H.S. Biochem. J. 1999. V. 344. № 1. P. 109–116.
  171. Ramirez P., Del Razo L.M., Gutierrez-Ruiz M.C., Gonsebatt M.E. Carciogenesis. 2000. V. 21. № 4. P. 701–706.
  172. Frye E.B., Degenhardt T.P., Thorpe S.R., Baynes J.W. J. Biol. Chem. 1998. V. 273.№ 30. P. 18714–18719.
  173. Paul R.G., Avery N.C., Slatter D.A., Sims T.J., Bailey A.J. Biochem. J. 1998. V. 330. № 3. P. 1241–1248.
  174. Niwa T., Katsuzaki T., Ishizaki Y., Hayase F., Miyazaki T., Uematsu T., Tatemichi N., Takei Y. FEBS Lett. 1997. V. 407. №3. P. 297–302.
  175. Hayase F., Nagaraj R.H., Miyata S., Njoroge F.G., Monnier V.M. J. Biol. Chem. 1989. V. 264.№ 7. P. 3758–3764.
  176. Wilker S.C., Chellan P., Arnold B.M., Nagaraj R.H. Anal. Biochem. 2001. V. 290. № 2. P. 353–358.
  177. Sell D.R., Monnier V.M. J. Clin. Invest. 1990. V. 85. P. 380–384.
  178. Obayashi H., Nakano K., Shigeta H., Yamaguchi M., Yoshimori K., Fukui M., Fujii M., Kitagawa Y., Nakamura N., Nakazawa Y., Ienaga K., Ohta M., Nishimura M., Fukui I., Kondo M. Biochem. Biophys. Res. Commun. 1996. V. 226. № 1. P. 37–41.
  179. Tessier F., Obrenovich M., Monnier V.M. J. Biol. Chem. 1999. V. 274. № 30. P. 20796–20804.
  180. Schmitt A., Schmitt J., Muench G., Gasic-Milencovich J. Anal. Biochem. 2005. V. 338. P. 201–215.
  181. Tsien R. Annu. Rev. Biochem. 1998. V. 67. P. 509–544.
  182. Zubova N.N., Bulavina A.Yu., Savitskii А.P. Biol. Chem. Rev. 2003. V. 43. P. 163–224.
  183. Zimmer M. Chem. Rev. 2002. V. 103. № 3. P. 759–781.
  184. Wouters F.S., Verveer P.J., Bastiaens P.I. Trends Cell. Biol. 2001. V. 11. № 5. P. 203–211.
  185. Toomre D., Manstein D.J. Trends Cell. Biol. 2001. V. 11. № 7. P. 298–303.
  186. Zubova N.N, Savitskii А.P. Biol. Chem. Rev. 2005. V. 45. P. 391–454.
  187. Kain S.R. Drug. Discov. Today. 1999. V. 4. № 7. P. 304–312.
  188. Taylor D.I., Woo E.S., Giuliano K.A. Curr. Opin. Biotechnol. 2001. V. 12. № 1. P. 75–81.
  189. Shinbrot E., Spencer C., Natale V., Kain S.R. Meth. Enzymol. 2000. V. 327. P. 513–522.
  190. Belmont A.S. Trends Cell. Biol. 2001. V. 11. № 6. P. 250–257.
  191. Matus A. Trends Cell. Biol. 1999. V. 9. № 2. P. 43.
  192. Matus A. Trends Cell. Biol. 2001. V. 11. № 5. P. 183.
  193. Green Fluorescent Protein in Methods in Enzymology (Conn P.M., ed.). 1999. Academic Press, New York. V. 302.P. 11–449.
  194. Green Fluorescent Protein in Methods in Cell Biology (Sullivan K.F., Kay S.A., eds.). 1999. Academic Press, New York/ V. 58. P. 1–367.
  195. Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L., Lukyanov S.A. Nat. Biotechnol. 1999/ V. 17. P. 969–973.
  196. Lukyanov K.A., Fradkov A.F., Gurskaya N.G., Matz M.V., Labas Y.A., Savitsky A.P., Markelov M.L., Zaraisky A.G., Zhao X., Fang Y., Tan W., Lukyanov S.A. J. Biol. Chem. 2000. V. 275. P. 25879–25882.
  197. Verkhusha V.V., Lukyanov K.A Nat. Biotechnol. 2004. V. 22. P. 289–296.
  198. Yanushevich Y.G., Staroverov D.B., Savitsky A.P.,Fradkov A.F., Gurskaya N.G., Bulina M.E., Lukyanov K.A., Lukyanov S.A. FEBS Lett. 2002. V. 511. P. 11–14.
  199. Jakubowski H. J. Nutr. 2000. V. 130. 2S Suppl. P. 377S–381S.
  200. Perla-Kajan J., Twardowski T., Jakubowski H. Amino Acids. 2007. V. 32. № 4. P. 561–572.
  201. Jakubowski H. J. Nutr. 2006. V. 136. 6S Suppl. P. 1741S–1749S.
  202. Jakubowski H. Cell. Mol. Life Sci. 2004. V. 61. № 4. P. 470–487.
  203. Jakubowski H. J. Biol. Chem. 2002. V. 277.№ 34. P. 30425–30428.
  204. Jakubowski H. J. Clin. Chem. Lab. Med. 2005. V. 41.№ 10. P. 1011–1014.
  205. Gerasimova Y.V., Knorre D.G., Shakirov M.M., Godovikova T.S. Bioorg. Med. Chem. Lett. 2008. V. 18. №16. P. 5396–5398.
  206. Jakubowski H., Zhang L., Bardeguez A., Aviv A. Circ. Res. 2000. V. 87. № 1. P. 45–51.
  207. Jakubowski H. FASEB J. 1999. V. 13. №15. P. 2277–2283.
  208. Glowacki R., Jakubowski H. J. Biol. Chem. 2004. V. 279.№ 2. P. 10864–10871.
  209. Sikora M., Marczak L., Stobiecki M., Twardowski T., Jakubowski H. FEBS J. 2007. V. 274. (supplement 1) P. 295.
  210. Glushchenko A. V., Jacobsen D. W. Antioxid. Redox Signal. 2007. V. 9. P. 1883–1898.
  211. Wright H.T. Crit. Rev. Biochem. Mol. Biol. 1991. V. 26. №1. P. 1–52.
  212. Robinson N.E., Robinson A.B. Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 22. P. 12409–12413.
  213. Wakankar A.A., Borchardt R.T. J. Pharm. Sci. 2006. V. 95. P. 2321–2336.
  214. Powell B.S., Enama J.T., Ribot W.J., Webster W., Little S., Hoover T., Adamovicz J.J., Andrews G.P. Proteins. 2007. V. 68.№ 2. P. 458–479.
  215. Catak S., Monard G., Aviyente V., Ruiz-Lopez M.F. J. Phys. Chem. A. 2006. V. 110. № 27. P. 8354–8365.
  216. Reissner K.J., Aswad D.W. Cell. Mol. Life Sci. 2003. V. 60. № 7. P. 1281–1295.
  217. Aswad D.W., Paranandi M.V., Schurter B.T. J. Pharm. Biomed. Anal. 2000. V. 21. № 6. P. 1129–1136.
  218. Takata T., Oxford J.T., Brandon T.R., Lampi K.J. Biochemistry. 2007. V. 46. № 30. P. 8861–8871.
  219. Hasegawa M., Morishima-Kawashima M., Takio K., Suzuki M., Titani K., Ihara Y. J. Biol. Chem. 1992. V. 267. № 24. P. 17047–17054.
  220. Doyle H.A., Gee R.J., Mamula M.J. J. Immunol. 2003. V. 171.№ 6. P. 2840–2847.
  221. Weber D.J., McFadden P.N., Caughey B. Biochem. Biophys. Res. Commun. 1998. V. 246. № 3. P. 606–608.
  222. Sandmeier E., Hunziker P., Kunz B., Sack R., Christen P. Biochem. Biophys. Res. Commun. 1999. V. 261.№ 3. P. 578–583.
  223. Robinson A.B., McKerrow J.H., Cary P. Proc. Natl. Acad. Sci. USA. 1970. V. 66. № 3. P. 753–757.
  224. Robinson N.E., Robinson A.B. Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 3. P. 944–949.
  225. Schmidt G., Sehr P., Wilm M., Selzer J., Mann M., Aktories K. Nature. 1997. V. 387. № 6634. P. 725–729.
  226. Hoffmann C., Schmidt G. Rev. Physiol. Biochem. Pharmacol. 2004. V. 152. P. 49–63.
  227. McNichol B.A., Rasmussen S.B., Carvalho H.M., Meysick K.C., O’Brien A.D. Infect. Immun. 2007. V. 75. № 11. P. 5095–5104.
  228. Jank T., Pack U., Giesemann T., Schmidt G., Aktories K. J. Biol. Chem. 2006. V. 281. № 28. P. 19527–19535.
  229. Stamnaes J., Fleckenstein B., Sollid L.M. Biochim. Biophys. Acta. 2008. V. 1784. № 11. P. 1804–1811.
  230. Caputo I., D’Amato A., Troncone R., Auricchio S., Esposito C. Amino Acids. 2004. V. 26.№ 4. P. 381–386.
  231. Cardamone J.M. Int. J. Biol. Macromol. 2008. V. 42. № 5. P. 413–419.
  232. Greenberg C.S., Birckbichler P.J., Rice R.H. FASEB J. 1991. V. 5. № 15. P. 3071–3077.
  233. Griffin M., Cassadio R., Bergamini C.M. Biochem. J. 2002. V. 368. Pt. 2. P. 377–396.

Views

Abstract - 324

PDF (English) - 88

PDF (Russian) - 73

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2009 Knorre D.G., Kudryashova N.V., Godovikova T.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies