Monitoring of the Zeta Potential of Human Cells upon Reduction in Their Viability and Interaction with Polymers

Cover Page

Abstract


The dynamic light scattering (DLS) technique was applied in order to assess the zeta potential of the plasma membrane of human cells. At pH 7.4, the cell zeta potential for different types of cells showed variations over a wide range and was equal to -19.4 ± 0.8 mV for HeLa cells and -31.8 ± 1.1 mV for erythrocytes. The difference could presumably be attributed to the differences in the biochemical composition of the cell plasma membrane. As a result of the heating of HeLa cells, the zeta potential shifted towards more negative voltages by 4.2 mV. An increase in the zeta potential correlated with an increase in the content of phosphatidylserine on the cell surface, which is considered to be an early marker of apoptosis. The DLS technique was also used to study the interactions between the cells and membranotropic polymers, such as polycations and nonionogenic Pluronic L121.


O. V. Bondar

Kazan (Volga Region) Federal University

Author for correspondence.
Email: oxanav.bondar@gmail.com

Russian Federation

D. V. Saifullina

Kazan (Volga Region) Federal University

Email: oxanav.bondar@gmail.com

Russian Federation

I. I. Shakhmaeva

Kazan (Volga Region) Federal University

Email: oxanav.bondar@gmail.com

Russian Federation

I. I. Mavlyutova

Kazan (Volga Region) Federal University

Email: oxanav.bondar@gmail.com

Russian Federation

T. I. Abdullin

Kazan (Volga Region) Federal University

Email: oxanav.bondar@gmail.com

Russian Federation

  1. Fernie A.R., Trethewey R.N., Krotzky A.J., Willmitzer L. // Nat. Rev. Mol. Cell. Biol. 2004. V. 5. P. 763-769.
  2. Boros L.G., Cascante M., Lee W.N. // Drug discovery today. 2002. V. 7. P. 364-372.
  3. Fang J., Palanisami A., Rajapakshe K. // Biosensors. 2011. V. 1. P 13-22.
  4. Kuo Y.-C., Lin T.-W. // J. Phys. Chem. B. 2006. V. 110. № 5. P. 2202-2208.
  5. Wilson W., Wade M., Holman S., Champlin F.R. // J. Microbiol. Meth. 2001. V. 43. P 153-164.
  6. Eylar E.H., Madoff M.A., Brody O.V., Oncley J.L. // J. Biol. Chem. 1962. V. 237. P. 1992-2000.
  7. Pack D.W., Hoffman A.S., Stayton S.P., Stayton PS. // Nat. Rev. Drug Disc. 2005. V. 4. P. 581-593.
  8. Firestone M.A., Wolf A.C., Seifert S. // Biomacromolecules. 2003. V. 4. P 1539-1549.
  9. Bryskhe K., Schillen K., Loéfroth J.E., Olsson U. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 1303-1309.
  10. Erukova V.Yu., Krylova O.O., Antonenko Yu.N., Melik-Nubarov N.S. // Biochim. Biophys. Acta. 2000. V. 1468. P. 73-86.

Views

Abstract - 294

PDF (English) - 83

PDF (Russian) - 176

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2012 Bondar O.V., Saifullina D.V., Shakhmaeva I.I., Mavlyutova I.I., Abdullin T.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies