Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells

Cover Page
  • Authors: Petrakova O.S.1,2, Ashapkin V.V.3,4, Voroteliak E.A.1, Bragin E.Y.4, Shtratnikova V.Y.4, Chernioglo E.S.1, Sukhanov Y.V.1, Terskikh V.V.1, Vasiliev A.V.1
  • Affiliations:
    1. Koltzov Institute of Developmental Biology, Russian Academy of Sciences
    2. Lomonosov Moscow State University
    3. Belozersky Institute, Moscow State University
    4. Center of Innovation and Technology of Biologically Active Compounds and Their Applications, Russian Academy of Sciences
  • Issue: Vol 4, No 4 (2012)
  • Pages: 47-57
  • Section: Research Articles
  • URL: http://actanaturae.ru/2075-8251/article/view/10613
  • DOI: https://doi.org/10.32607/20758251-2012-4-4-47-57
  • Cite item

Abstract


Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for an in vitro investigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for the in vitro analysis of the cell differentiation potential.


O. S. Petrakova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: PetrakovaOl@yandex.ru

Russian Federation

V. V. Ashapkin

Belozersky Institute, Moscow State University; Center of Innovation and Technology of Biologically Active Compounds and Their Applications, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

E. A. Voroteliak

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

E. Yu. Bragin

Center of Innovation and Technology of Biologically Active Compounds and Their Applications, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

V. Yu. Shtratnikova

Center of Innovation and Technology of Biologically Active Compounds and Their Applications, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

E. S. Chernioglo

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

Y. V. Sukhanov

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

V. V. Terskikh

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

A. V. Vasiliev

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: PetrakovaOl@yandex.ru

Russian Federation

  1. Uryvaeva I.V. Stem cells in liver regeneration. The stem cells biology and cellular technologies. M.: Medicine, 2009. V. 2. 456 P.
  2. Zaret, K.S. // Nat. Rev. Genet. 2008. V. 9. P. 329-340.
  3. Rambhatla L., Chiu C.P., Kundu P., Peng Y., Carpenter M.K. // Cell Transplant. 2003. V. 12. № 1. P. 1-11.
  4. Hay D.C., Fletcher J., Payne C., Terrace J.D., Gallagher R.C., Snoeys J., Black J.R., Wojtacha D., Samuel K., Hannoun Z., et al. // Proc. Natl. Acad. Sci. USA. 2008. V. 26. № 105. P. 12301-12306.
  5. Soto-Gutierrez A., Navarro-Alvarez N., Caballero-Corbalan J., Tanaka N., Kobayashi N. // Acta Med. Okayama. 2008. V. 62. P. 63-68.
  6. Mizumoto H., Aoki K., Nakazawa K., Ijima H., Funatsu K., Kajiwara T. // Transplant. Proc. 2008. V. 40. № 2. P. 611-613.
  7. Snykers S., Vanhaecke T., De Becker A., Papeleu P., Vinken M., Van Riet I., Rogiers V. // BMC Dev. Biol. 2007. V. 2. № 7. P. 24.
  8. De Kock J., Vanhaecke T., Rogiers V., Snykers S. // Aatex. 2008. V. 14. P. 605-611.
  9. Gumerova A.A., Shafigullina A.K., Trondin A.A., Gazizov I.M., Andreeva D.I., Kaligin M.S., Rizvanov A.A., Kiasov A.P. // Cell Transplantation and Tissue Engineering. 2011. V. 6(4). P. 72-81.
  10. Sgodda M., Aurich H., Kleist S., Aurich I., Konig S., Dollinger M.M., Fleig W.E., Christ B. // Exp. Cell Res. 2007. V. 313. P. 2875-2886.
  11. Seo M.J., Suh S.Y., Bae Y.C., Jung J.S. // Biochem. Biophys. Res. Commun. 2005. V. 328. P. 258-264.
  12. Stock P., Staege M.S., Muller L.P., Sgodda M., Volker A., Volkmer I., Lutzkendorf J., Christ B. // Transplant. Proc. 2008. V. 40. P. 620-623.
  13. Dawn M.D., De Coppi P., Bartsch G., Atala A. // Meth. Enzymology. 2006. V. 419. P. 426-438.
  14. Zheng Y.B., Gao Z.L., Xie C., Zhu H.P., Peng L., Chen J.H., Chong Y.T. // Cell Biol. Internat. 2008. V. 32. № 11. P. 1439-1448.
  15. Gvazava I.G., Vasilev A.V., Balan O.V., Terskikh V.V. //Tsitologiia. 2011. V. 53. № 2. P.129-134.
  16. Hisatomi Y., Okumura K., Nakamura K., Matsumoto S., Satoh A., Nagano K., Yamamoto T., Endo F. // Hepatology. 2004. V. 39. P. 667-675.
  17. Sato A., Okumura K., Matsumoto S., Hattori K., Hattori S., Shinohara M., Endo F. // Cloning Stem. Cells. 2007. V. 9. P. 191-205.
  18. Matsumoto S., Okumura K., Ogata A., Hisatomi Y., Sato A., Hattori K., Matsumoto M., Kaji Y., Takahashi M., Yamamoto T., et al. // Cloning Stem Cells. 2007. V. 9. P. 176-190.
  19. Davydova D.A., Voroteliak E.A., Bragina E.E., Terskikh V.V., Vasil’ev A.V. // Tsitologiia. 2011. V. 53(4). P. 325-31.
  20. Shinin V.V., Chernaia O.G., Terskikh V.V. // Ontogenez. 2002. V. 33(3). P. 176-81.
  21. Voroteliak E.A., Leonova O.G., Shinin V.V., Vasil’ev A.V., Terskikh V.V. // Dokl. Akad. Nauk. 1999. V. 369(5). P. 695-697.
  22. Chermnykh E.S., Vorotelyak E.A., Gnedeva K.Y., MoldaverM.V., Yegorov Y.E., Vasiliev A.V., Terskikh V.V. //Histochem. Cell Biol. 2010. V. 133. P. 567-576.
  23. Zhang Y., Jalili R.B., Warnock G.L., Ao Z., Marzban L., Ghahary A. // The Am. J. Pathol. 2012. V. 181. № 4. P. 1296-1305.
  24. Babaeva A.G., Shubnikova E.A. Structure, function and adaptive growth of salivary glands. M.: MSU. 1979. P 192.
  25. Duncan A.W., Dorrell C., Grompe M. // Gastroenterology. 2009. V. 137(2). P. 466-481.
  26. Reddy J.K., Rao M.S., Yeldandi A.V., Tan X.D., Dwivedi R.S. // Digestive Diseases Sci. 1991. V. 36(4). P. 502-509.
  27. Dabeva M.D., Hwang S.G., Vasa S.R., Hurston E., Novikoff P.M., Hixson D.C., Gupta S., Shafritz D.A. // Proc. Natl. Acad. Sci. USA. 1997. V. 8. № 94. P. 7356-7361.

Views

Abstract - 145

PDF (English) - 14

PDF (Russian) - 30

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2012 Petrakova O.S., Ashapkin V.V., Voroteliak E.A., Bragin E.Y., Shtratnikova V.Y., Chernioglo E.S., Sukhanov Y.V., Terskikh V.V., Vasiliev A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies