Peculiarities of the Regulation of Gene Expression in the Ecl18kI Restriction–Modification System

Cover Page
  • Authors: Burenina O.Y.1, Fedotova E.A.1, Ryazanova A.Y.2, Protsenko A.S.3, Zakharova M.V.3, Karyagina A.S.4,2,5, Solonin A.S.3, Oretskaya T.S.1,2, Kubareva E.A.2
  • Affiliations:
    1. Lomonosov Moscow State University
    2. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
    3. Skryabin Institute of Biochemistry and Physiology of Microorganisms
    4. Institute of Agricultural Biotechnology
    5. Gamaleya Research Institute of Epidemiology and Microbiology
  • Issue: Vol 5, No 2 (2013)
  • Pages: 70-80
  • Section: Research Articles
  • URL: http://actanaturae.ru/2075-8251/article/view/10601
  • DOI: https://doi.org/10.32607/20758251-2013-5-2-70-80
  • Cite item

Abstract


Transcription regulation in bacterial restriction–modification (R–M) systems is an important process, which provides coordinated expression levels of tandem enzymes, DNA methyltransferase (MTase) and restriction endonuclease (RE) protecting cells against penetration of alien DNA. The present study focuses on (cytosine-5)-DNA methyltransferase Ecl18kI (M.Ecl18kI), which is almost identical to DNA methyltransferase SsoII (M.SsoII) in terms of its structure and properties. Each of these enzymes inhibits expression of the intrinsic gene and activates expression of the corresponding RE gene via binding to the regulatory site in the promoter region of these genes. In the present work, complex formation of M.Ecl18kI and RNA polymerase from Escherichia сoli with the promoter regions of the MTase and RE genes is studied. The mechanism of regulation of gene expression in the Ecl18kI R–M system is thoroughly investigated. M.Ecl18kI and RNA polymerase are shown to compete for binding to the promoter region. However, no direct contacts between M.Ecl18kI and RNA polymerase are detected. The properties of M.Ecl18kI and M.SsoII mutants are studied. Amino acid substitutions in the N-terminal region of M.Ecl18kI, which performs the regulatory function, are shown to influence not only M.Ecl18kI capability to interact with the regulatory site and to act as a transcription factor, but also its ability to bind and methylate the substrate DNA. The loss of methylation activity does not prevent MTase from performing its regulatory function and even increases its affinity to the regulatory site. However, the presence of the domain responsible for methylation in the M.Ecl18kI molecule is necessary for M.Ecl18kI to perform its regulatory function.


O. Yu. Burenina

Lomonosov Moscow State University

Email: kubareva@belozersky.msu.ru

Russian Federation

E. A. Fedotova

Lomonosov Moscow State University

Email: kubareva@belozersky.msu.ru

Russian Federation

A. Yu. Ryazanova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: kubareva@belozersky.msu.ru

Russian Federation

A. S. Protsenko

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Email: kubareva@belozersky.msu.ru

Russian Federation

M. V. Zakharova

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Email: kubareva@belozersky.msu.ru

Russian Federation

A. S. Karyagina

Institute of Agricultural Biotechnology; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Gamaleya Research Institute of Epidemiology and Microbiology; Institute of Agricultural Biotechnology

Email: kubareva@belozersky.msu.ru

Russian Federation

A. S. Solonin

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Email: kubareva@belozersky.msu.ru

Russian Federation

T. S. Oretskaya

Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: kubareva@belozersky.msu.ru

Russian Federation

E. A. Kubareva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Author for correspondence.
Email: kubareva@belozersky.msu.ru

Russian Federation

  1. Kobayashi I. // Nucleic Acids Research 2001, V.29, P.3742-3756
  2. Nagornykh M.O., Bogdanova E.S., Protsenko A.S., Zakharova M.V., Severinov K.V. // Russian Journal of Genetics 2008, V.44, P.523-532
  3. Karyagina A., Shilov I., Tashlitskii V., Khodoun M., Vasil’ev S., Lau P.C.K., Nikolskaya I. // Nucleic Acids Research 1997, V.25, P.2114-2120
  4. Denjmukhametov M.M., Brevnov M.G., Zakharova M.V., Repyk A.V., Solonin A.S., Petrauskene O.V., Gromova E.S. // FEBS Lett. 1998, V.433, P.233-236
  5. Zakharova M.V., Beletskaya I.V., Denjmukhametov M.M., Yurkova T.V., Semenova L.M., Shlyapnikov M.G., Solonin A.S. // Mol. Genet. Genomics 2002, V.267, P.171-178
  6. Miyahara M., Ishiwata N., Yoshida Y. // Biol. Pharm. Bull. 1997, V.20, P.201-203
  7. Ibáñez M., Alvarez I., Rodríguez-Peña J.M., Rotger R. // Gene 1997, V.196, P.145-158
  8. Protsenko A., Zakharova M., Nagornykh M., Solonin A., Severinov K. // Nucleic Acids Research 2009, V.37, P.5322-5330
  9. Fedotova E.A., Protsenko A.S., Zakharova M.V., Lavrova N.V., Alekseevsky A.V., Oretskaya T.S., Karyagina A.S., Solonin A.S., Kubareva E.A. // Biochemistry (Moscow). 2009, V.74, P.85-91
  10. Vorob’eva O.V., Vasil’ev S.A., Karyagina A.S., Oretskaya T.S., Kubareva E.A. // Molekulyarnaya Biologiya 2000, V.34, P.921-926
  11. Shilov I., Tashlitsky V., Khodoun M., Vasil’ev S., Alekseev Y., Kuzubov A., Kubareva E., Karyagina A. // Nucleic Acids Research 1998, V.26, P.2659-2664
  12. Ryazanova A.Yu., Molochkov N.V., Abrosimova L.A., Alexeevsky A.V., Karyagina A.S., Protsenko A.S., Friedhoff P., Oretskaya T.S., Kubareva E.A. // Mol. Biol. (Moscow) 2010, V.44, P.807-816
  13. Karyagina A.S., Alexeevski A.V., Golovin A.V., Spirin S.A., Vorob’eva O.V., Kubareva E.A. // Biophysics. 2003, V.48, P.S45-S55
  14. Severinov K., Darst S.A. // Proc. Natl. Acad. Sci. USA. 1997, V.94, P.13481-13486
  15. Scatchard G. // Annals New York Acad. Sci. 1949, V.51, P.660-672
  16. Callen B.P., Shearwin K.E., Egan J.B. // Trends Genet. 2005, V.21, P.339-345
  17. Vijesurier R.M., Carlock L., Blumenthal R.M., Dunbar J.C. // Journal of Bacteriology 2000, V.182, P.477-487
  18. Ryazanova A.Yu., Winkler I., Friedhoff P., Viryasov M.B., Oretskaya T.S., Kubareva E.A. // Nucleosides, Nucleotides and Nucleic Acids. 2011, V.30, P.632-650
  19. Cheng X., Kumar S., Posfai J., Pflugrath J.W., Roberts R.J. // Cell 1993, V.74, P.299-307

Views

Abstract - 182

PDF (English) - 60

PDF (Russian) - 53

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2013 Burenina O.Y., Fedotova E.A., Ryazanova A.Y., Protsenko A.S., Zakharova M.V., Karyagina A.S., Solonin A.S., Oretskaya T.S., Kubareva E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies